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Abstract 

This study presents an innovative approach to enhancing the efficiency of dental 
laser treatments by integrating laser-tissue interaction models with advanced 
optimization algorithms. The laser-tissue interaction is modeled using the heat 
transfer equation to simulate the temperature distribution in biological tissues 
during laser irradiation. The innovation of this research lies in the dynamic 
optimization of key laser parameters, such as intensity, irradiation time, and beam 
focus, using a gradient-based optimization algorithm. The aim is to achieve the 
optimal temperature for the ablation of abnormal tissue while adhering to safety 
constraints to prevent overheating of surrounding healthy tissues.Numerical 
simulations were conducted on a one-dimensional tissue model, demonstrating the 
effectiveness of the proposed method in maintaining the target temperature of 
60°C without exceeding the safety threshold of 80°C. The optimization process 
gradually reduced laser power and improved treatment accuracy with minimal 
error. Additionally, the numerical model's accuracy was validated by comparison 
with analytical solutions. These findings highlight the potential of combining 
computational modeling and optimization techniques to improve the precision, 
safety, and efficacy of dental laser treatments. 
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Highlights 

• Development of a hybrid optimization model for laser power adjustment in dental treatments. 

• Implementation of heat transfer equation and finite difference method for precise tissue temperature 
simulation. 

• Utilization of gradient descent for optimizing laser parameters and ensuring thermal safety. 

• Validation of the numerical model through comparison with analytical solutions. 

• Proposal of an optimal laser power control strategy to minimize damage to healthy tissue. 
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1. Introduction 

Dental laser treatments have emerged as a prominent method for performing various surgical and therapeutic procedures, offering 

advantages such as minimal invasiveness, reduced pain, and faster recovery times. The efficiency of these treatments, however, 

largely depends on the precise control of laser parameters and the accurate prediction of their interaction with biological tissues. 

Enhanced efficiency in dental laser applications can be achieved through a combined approach that integrates tissue interaction 

models and optimization algorithms. The accurate modeling of laser-tissue interactions is paramount in understanding the 

distribution of laser energy within tissues, which is critical for optimizing treatment outcomes and ensuring patient safety [1]. 

Recent advances in the field have underscored the importance of simulating complex biological processes such as energy absorption, 

heat conduction, and structural changes in tissues under laser irradiation. These models provide a framework for determining optimal 

laser parameters, including intensity and exposure time, thereby minimizing risks such as tissue overheating while enhancing 

therapeutic efficacy [2]. Computational models have been particularly instrumental in simulating the laser-induced processes in soft 

and hard tissues, enabling the design of safer and more effective dental laser systems. 

Moreover, data-driven approaches have demonstrated substantial potential in enhancing laser-tissue interaction predictions. For 

instance, recent research on the use of machine learning algorithms to predict ablation cavity shapes in robotic laser surgery has 

shown that such methods can bypass traditional modeling assumptions by utilizing empirical data. This approach allows for the 

precise configuration of laser systems to better target tissues, minimizing collateral damage to surrounding healthy areas [3,4]. These 

advancements further highlight the growing significance of data-driven methodologies in refining laser treatment strategies. 

In addition to empirical modeling, the use of computational simulations in studying the vaporization dynamics of 𝐶𝑂2 lasers has 

provided valuable quantitative insights into the vaporization process, facilitating the evaluation of treatment effectiveness and safety 

[5]. These simulations enable researchers to assess the implications of various laser parameters on tissue ablation, contributing to 

the development of optimized clinical protocols for dental laser treatments. 

By integrating these laser-tissue interaction models with advanced optimization algorithms, a systematic framework for improving 

the precision and efficacy of dental laser procedures can be realized. Optimization techniques such as gradient descent, genetic 

algorithms, and particle swarm optimization offer robust methods for fine-tuning laser parameters in response to modeled tissue 

dynamics. This ensures that laser energy is applied in a controlled and effective manner, maximizing therapeutic benefits while 

minimizing the risk of damage to adjacent tissues [6]. The combined approach of leveraging tissue interaction models with 

optimization algorithms, therefore, holds significant promise for advancing the performance and safety of dental laser treatments. 

 The foundation of the proposed model lies in the precise simulation of laser-tissue interactions, complemented by advanced 

optimization techniques to enhance the efficiency of dental laser treatments. The interaction between laser energy and biological 

tissues is governed by a series of partial differential equations (PDEs) that describe the behavior of light as it is absorbed, scattered, 

and diffused within the tissue. This complex interaction directly influences the temperature distribution and the extent of tissue 

damage during laser irradiation [10]. 

 
2. Innovation and contributions 
This study presents an innovative approach to enhancing the efficiency of dental laser treatments by integrating laser-tissue 
interaction models with advanced optimization algorithms. The laser-tissue interaction is modeled using the heat transfer 
equation to simulate the temperature distribution in biological tissues during laser irradiation. The innovation of this research lies 
in the dynamic optimization of key laser parameters, such as intensity, irradiation time, and beam focus, using a gradient-based 
optimization algorithm.  
 
3. Materials and Methods 

The heat transfer process within the tissue can be mathematically described using the classical heat conduction equation: 

 (1) 

𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
= 𝑎 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) +

𝑄(𝑥, 𝑦, 𝑧, 𝑡)

𝜌𝑐𝑝

 

where 

• 𝑇(𝑥, 𝑦, 𝑧, 𝑡) is the temperature distribution inside the tissue over time, 

• 𝑎 represents the thermal diffusivity of the tissue, 

• 𝑄(𝑥, 𝑦, 𝑧, 𝑡) is the energy deposition rate due to laser absorption, 

• 𝜌 is the tissue density, 

• 𝑐𝑝is the specific heat capacity of the tissue [11]. 
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The optical properties of the tissue, including the absorption coefficient (𝜇𝑎), scattering coefficient (𝜇𝑎), and the anisotropy factor 

(𝑔), are critical to determining how laser light propagates and deposits energy within the tissue. These properties are modeled using 

the radiative transport equation (𝑅𝑇𝐸), which, under certain approximations, can be simplified to the following diffusion equation 

for isotropic scattering [10]: 

(2) 

−∇. (D∇Φ) + 𝜇𝑎Φ = 𝑆 

where: 

• Φ is the fluence rate, representing the amount of laser energy per unit area, 

• 𝐷 is the diffusion coefficient, computed as 𝐷 =
1

3(𝜇𝑎+(1−𝑔)𝜇𝑠)
, 

• 𝑆 is the source term representing the incident laser energy. 

To maximize treatment efficacy and minimize damage to surrounding healthy tissue, optimization algorithms are employed to fine-

tune the laser parameters. These parameters, which include laser intensity, exposure time, and beam focus, are optimized to achieve 

the desired tissue response while maintaining safety constraints [9]. This is formulated as an objective function to be minimized: 

(3) 

Minimize J(θ) = ∑(𝐸𝑟𝑟𝑜𝑟𝑖(𝜃)

𝑛

𝑖=1

+ 𝜆. 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝜃)) 

where: 

• J(θ) represents the overall objective function, 

• θ is the vector of laser parameters (e.g., energy, pulse duration, beam focus), 

• 𝐸𝑟𝑟𝑜𝑟𝑖(𝜃)quantifies the deviation from the target tissue response at point 𝑖, 

• 𝜆 is the regularization parameter to avoid overfitting, 

• 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝜃) adds penalties for exceeding safety thresholds, such as excessive tissue heating. 

      Optimization algorithms, including gradient-based methods and metaheuristic techniques such as genetic algorithms, are applied 

to solve this problem. The gradient descent algorithm updates the parameters iteratively as follows: 

(4) 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂. ∇𝜃𝐽(𝜃) 

where: 

• 𝜂 is the learning rate that controls the step size, 

• ∇𝜃𝐽(𝜃) is the gradient of the objective function with respect to the laser parameters [9]. 

 

     Alternatively, genetic algorithms evolve a population of potential solutions over multiple generations to optimize laser 

parameters. The key steps in this approach include: 

• Initializing a population of candidate solutions 𝜃1, 𝜃2, … , 𝜃𝑁, 

• Evaluating the fitness of each candidate based on the objective function 𝐽(𝜃), 

• Applying selection, crossover, and mutation operators to generate new candidate solutions, 

• Repeating the process until convergence or a predetermined number of iterations is reached [7]. 

    The integration of laser-tissue interaction models with optimization algorithms forms a dynamic feedback loop. The laser-tissue 

interaction model simulates the tissue response to laser energy, providing input for the optimization algorithm, which adjusts the 

laser parameters to improve the outcome iteratively. This closed-loop system ensures that the laser energy is delivered in a manner 

that maximizes therapeutic effect while minimizing harm to adjacent healthy tissues. This combination of modeling and optimization 

offers a robust framework for enhancing the precision and safety of dental laser treatments [7]. 

 

4. Results and Discussion 

Figure 1 illustrates the distribution of collimated intensity (𝐼𝑐) along the tissue depth for different time instants (𝑡 =

 0.1 𝑠, 1 𝑠, 5 𝑠, 𝑎𝑛𝑑 10 𝑠). The collimated intensity represents the unscattered, direct laser energy as it penetrates deeper into the 

tissue. 

At the earliest time instant (𝑡 =  0.1 𝑠), the intensity is highest at the tissue surface and decreases gradually with depth. As time 

progresses, the rate of intensity attenuation becomes more pronounced due to the cumulative effects of energy absorption and 

scattering within the tissue. By 𝑡 =  10 𝑠, the intensity near the surface is still relatively high, but deeper regions exhibit significantly 

lower intensity levels, indicating substantial energy absorption closer to the surface and less penetration to deeper layers. 
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Figure 1: Collimated intensity distribution over tissue depth at various time instants. The plot demonstrates how laser energy 

propagates and dissipates within the tissue over time. 

 

Figure 1 highlights the temporal dynamics of laser-tissue interaction, where higher intensity is maintained near the surface in the 

earlier stages of irradiation, while deeper regions experience a more significant drop in energy over time. Different markers are used 

to differentiate the time instants: circles for 𝑡 =  0.1 𝑠, squares for 𝑡 =  1 𝑠, diamonds for 𝑡 =  5 𝑠, and stars for 𝑡 =  10 𝑠. This 

pattern demonstrates how laser energy penetrates the tissue and dissipates over time, providing critical insights into optimizing laser 

parameters for targeted tissue ablation while minimizing damage to surrounding areas. 

 

4.1 Final Temperature Distribution 

The final temperature distribution within the tissue at the conclusion of the simulation is illustrated in Figure 2. As shown in the 

figure, the temperature across the tissue varies, with the peak temperature occurring near the laser application site. The distribution 

demonstrates that the optimized laser parameters successfully maintain the tissue temperature within safe limits while achieving the 

desired ablation effect. 

   

 
Figure 2: Final temperature distribution across the tissue at the end of the simulation. The target temperature 

of 60°C is achieved at the center of the tissue, while the maximum temperature remains below the safety 

threshold of 80°C. 

 

4.2 Temperature Evolution Over Time 

The evolution of temperature at the center of the tissue over time is depicted in Figure 3.  The temperature gradually increases as 

the laser energy is applied, eventually stabilizing around the target temperature. This indicates that the laser power was adjusted 

appropriately to maintain the desired temperature throughout the treatment duration. 

 



First & Second author: Title 
 

 
Figure 3: Temperature evolution at the center of the tissue over time. The plot shows stabilization around the target temperature of 

60°C after an initial transient phase. 

The temperature evolution plot (Figure 3) highlights the clinical significance of achieving precise thermal control during laser 

treatments. The plot demonstrates a gradual increase in temperature to the target value of 60°𝐶, with stabilization occurring within 

a clinically relevant time frame. This controlled heating ensures effective tissue ablation while minimizing collateral damage to 

surrounding healthy tissues. Maintaining temperatures below the safety threshold of 80°C further emphasizes the method’s 

applicability in clinical settings, where patient safety is paramount. 
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Appendix 

 
Table 1. Model parameters 

Parameter Value/Symbol Description 

Tissue domain length L = 0.01 m Total length of the tissue exposed to laser radiation 

Number of spatial points N_x = 100 Number of discretized points in the tissue domain 

Spatial step size ∆x = L/N_x = 0.0001 

m 

Distance between two consecutive points in the spatial grid 

Total simulation time t_end = 100 s Duration of laser radiation and heat transfer simulation 

Time step size dt = 0.01 s Temporal resolution for solving the heat transfer equation 

Thermal diffusivity a = 1.4 × 10⁻⁷ m²/s Tissue's ability to conduct heat 

Tissue density ρ = 1000 kg/m³ Mass density of the biological tissue used in the simulation 

Specific heat capacity c_p = 4000 J/(kg·K) Energy required to increase the tissue temperature by 1°C 

Thermal conductivity k = a · ρ · c_p Tissue's ability to transfer heat through conduction 

Initial laser power Q_0 = 500 W/m² Initial laser power applied to the tissue, optimized during the 

simulation 

Learning rate learning_rate = 50 Rate of laser power adjustment in the gradient descent algorithm 

Maximum iterations max_iter = 50 Stopping criterion to prevent infinite optimization execution 

Target temperature target_temp = 60°C Desired temperature at the tissue center for therapeutic purposes 

Maximum allowable 

temperature 

T_max_constraint = 

80°C 

Safety threshold to prevent tissue damage 

Convergence threshold tolerance = 0.01°C Difference between final and target temperature to confirm 

convergence 

Minimum gradient for 

convergence 

min_gradient = 1 × 

10⁻³ 

Minimum gradient value to stop the optimization process 

Left boundary condition T_left = 37°C Boundary temperature on the left side of the tissue, representing 

normal body temperature 

Heat transfer coefficient h = 10 W/(m²·K) Rate of heat transfer from the tissue to the surrounding air 

Ambient temperature T_air = 25°C Temperature of the environment surrounding the tissue 

 

Table 2: Optimization results 
Repeatability 

 

Initial laser power 
 (W⁄m^2 ) 

 

Final laser power 
(W⁄m^2 ) 

 

Target 
temperature (℃) 

 

Final error (℃) 
 

0 500 451.23 60 0.32 

10 451.23 423.15 60 0.21 

20 423.15 412.89 60 0.08 

50 412.89 407.67 60 0.02 

 
Table 3. Comparison of Numerical and Analytical Temperatures at Specific Points 

Position (m)  Temperature  
(numerical model) °C  

Temperature 
 (analytical model) °C  

0.002  36.274  37.002 

0.005 34.247 37.011 

0.008 29.994 37.029 

 
Table 4: Comparison of the Proposed Method with Existing Methods 

Method Advantages Disadvantages Advantages of the Proposed 

Method 

Empirical Models High accuracy due to real 

clinical trial data (Sudo et al. 

[8]) 

Costly, time-consuming, and 

limited generalizability 

Reduces the need for extensive 

physical experiments 

Classical Numerical 

Models (Fourier-

based) 

Accurate heat transfer 

simulation (Vastava et al. [1]) 

Assumes instantaneous heat 

propagation, unsuitable for 

biology 

Uses non-Fourier models for 

more precise tissue temperature 

prediction 
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Data-Driven and 

Machine Learning 

Methods 

Accurate predictions using large 

datasets (Mao et al. [7]) 

Requires extensive data, prone 

to overfitting, limited 

explainability 

Combines physical modeling 

with intelligent optimization for 

higher accuracy 

Classical Laser 

Parameter 

Optimization 

Well-known methods like 

gradient descent and genetic 

algorithms (Kim et al. [6]) 

Slow convergence, 

dependence on initial 

conditions 

Faster convergence with 

dynamic adjustments for laser 

parameters 
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