A non-disruptive multi-objective charging strategy for WRSN through multi-UAV deployment optimization using a meta-heuristic algorithm
Subject Areas : Computer Engineering and ITPayman Habibi 1 , Goran Hassanifard 2 , Abdulbaghi Ghaderzadeh 3 , Arez Nosratpour 4
1 - Department of Electrical Engineering, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
2 - هیات علمی
3 - Department of computer engineering, Islamic Azad university sanandaj branch
4 - Department of Electrical Engineering, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
Keywords: Multi-target charging strategy, Wireless Rechargeable Sensor Networks (WRSN), CUAV, K-means, Harris Hawks Optimization (HHO).,
Abstract :
Here, a planning approach for CUAVs movement path and charging schedule of sensor nodes under uncertainty in data transfer rate and energy consumption in nodes with the help of Harris Hawks Optimization (HHO) and gradient-based optimization (GBO) algorithms have been presented. By considering the inequalities and uncertainty in the battery limit and energy consumption of the nodes, we will achieve new scheduling strategies for WRSNs to increase the charging throughput and increase the network lifetime. Initially, with the help of information about the position and remaining energy of the nodes, clustering of the nodes into the number of drones has been done by the K-means method. According to the definition of the multi-purpose function of CUAV and with the help of the proposed algorithms, the routing and charging schedule of each of the drones is planned. In the defined objective function, all uncertainties and inequalities of the network are included for the delay and consumption of energy and battery of the nodes. The simulation was done under MATLAB software. The results showed that the proposed method based on HHO has achieved better solutions in terms of increasing the network lifetime and reducing the delay and optimizing energy consumption.
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE
Communications magazine, vol. 40, pp. 102-114, 2002. [2] G. V. Merrett, N. R. Harris, B. M. Al-Hashimi, and N. M. White, "Energy managed reporting for wireless
sensor networks," Sensors and Actuators A: Physical, vol. 142, pp. 379-389, 2008. [3] S. Guo, C. Wang, and Y. Yang, "Joint mobile data gathering and energy provisioning in wireless rechargeable
sensor networks," IEEE Transactions on Mobile Computing, vol. 13, pp. 2836-2852, 2014. [4] M. Angurala, M. Bala, and S. S. Bamber, "Performance analysis of modified AODV routing protocol with
lifetime extension of wireless sensor networks," IEEE Access, vol. 8, pp. 10606-10613, 2020. [5] E. F. Orumwense and K. Abo-Al-Ez, "A Charging Technique for Sensor Nodes in Wireless Rechargeable Sensor Networks for Cyber-physical Systems," in 2021 International Conference on Electrical, Computer and
Energy Technologies (ICECET), 2021, pp. 1-6. [6] Y. Hong, C. Luo, D. Li, Z. Chen, X. Wang, and X. Li, "Energy efficiency optimization for multiple chargers in
Wireless Rechargeable Sensor Networks," Theoretical Computer Science, 2022. [7] S. Liang, Z. Fang, G. Sun, C. Lin, J. Li, S. Li, et al., "Charging UAV deployment for improving charging performance of wireless rechargeable sensor networks via joint optimization approach," Computer Networks,
vol. 201, p. 108573, 2021. [8] S. Priyadarshani, A. Tomar, and P. K. Jana, "An efficient partial charging scheme using multiple mobile
chargers in wireless rechargeable sensor networks," Ad Hoc Networks, vol. 113, p. 102407, 2021. [9] Y. Dong, G. Bao, Y. Liu, M. Wei, Y. Huo, Z. Lou, et al., "Instant on-demand charging strategy with multiple
chargers in wireless rechargeable sensor networks," Ad Hoc Networks, vol. 136, p. 102964, 2022. [10] Q. Qian, J. OKeeffe, Y. Wang, and D. Boyle, "Practical Mission Planning for Optimized UAV-Sensor Wireless
Recharging," arXiv preprint arXiv:2203.04595, 2022. [11] Y. Dong, Y. Wang, S. Li, M. Cui, and H. Wu, "Demand‐based charging strategy for wireless rechargeable
sensor networks," ETRI Journal, vol. 41, pp. 326-336, 2019. [12] Y. Jia, W. Jiahao, J. Zeyu, and P. Ruizhao, "Multiple Mobile Charger Charging Strategy Based on Dual
Partitioning Model for Wireless Rechargeable Sensor Networks," IEEE Access, vol. 10, pp. 93731-93744, 2022. [13] M. Tian, W. Jiao, and J. Liu, "The charging strategy of mobile charging vehicles in wireless rechargeable
sensor networks with heterogeneous sensors," IEEE Access, vol. 8, pp. 73096-73110, 2020. [14] R. Kumar and J. C. Mukherjee, "On-demand vehicle-assisted charging in wireless rechargeable sensor
networks," Ad Hoc Networks, vol. 112, p. 102389, 2021. [15] J. Li, G. Sun, A. Wang, M. Lei, S. Liang, H. Kang, et al., "A many-objective optimization charging scheme for wireless rechargeable sensor networks via mobile charging vehicles," Computer Networks, vol. 215, p. 109196,
2022. [16] Y. Jiang, Q. Luo, Y. Wei, L. Abualigah, and Y. Zhou, "An efficient binary Gradient-based optimizer for feature
selection," Math. Biosci. Eng, vol. 18, pp. 3813-3854, 2021. [17] H.-P. Kriegel, E. Schubert, and A. Zimek, "The (black) art of runtime evaluation: Are we comparing
algorithms or implementations?," Knowledge and Information Systems, vol. 52, pp. 341-378, 2017. [18] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, "Harris hawks optimization: Algorithm
and applications," Future generation computer systems, vol. 97, pp. 849-872, 2019. [19] L. He, L. Kong, Y. Gu, J. Pan, and T. Zhu, "Evaluating the on-demand mobile charging in wireless sensor
networks," IEEE Transactions on Mobile Computing, vol. 14, pp. 1861-1875, 2014. [20] T. Zou, S. Lin, Q. Feng, and Y. Chen, "Energy-efficient control with harvesting predictions for solar-powered
wireless sensor networks," Sensors, vol. 16, p. 53, 2016.