Semiparametric estimation of agricultural production function based on modeling productivity dynamics (case study: estimation of the tomato yield function in selected provices of Iran)
Subject Areas : Agricultural Economics ResearchMahdi Ghaemi Asl 1 * , Mostafa Salimifar 2
1 - دانشجوي دکتري علوم اقتصادي، دانشکده علوم اداري و اقتصادي، دانشگاه فردوسي مشهد
2 - sاستاد گروه اقتصاد، دانشکده علوم اداري و اقتصادي، دانشگاه فردوسي مشهد
Keywords: Estimation of production function, Selection problem, Simultaneity problem, Semiparameteric method,
Abstract :
Selection problem and difficulties caused by unobserved shocks and simultaneity problem which is created by the relationship between productivity and inputs demand, when firms determine the optimum level of input, can have a significant effect on estimation of independent variables. Existence of these two problems in decision making of firms causes that the estimators such as least squares have biased estimation for elements of production function. In this article, in addition to introduction of the three-step semiparametric estimator of Olly and Pakes (1996) in order to control the biases of selection and simultaneity, we use this method to estimate of tomato production function based on information of fourteen provinces of Iran in period of 1379-1386. Result of production function estimation with semi-parametric method (unlike traditional methods), shows that the physical capital, labor, water, seed, poison and fertilizer have positive relationship with amount of production, and among all of inputs, the labor force, water, seed and poison are significant. Also results of models show that the estimated parameters of labor and capital are consistent with the implications of Olly and Pakes (1996) and show that labor estimated parameter in traditional methods (unlike semi-arametric method), has an upward bias and the coefficient associated with capital is downward biased. Therefore in estimation of production function and modeling of shocks, dynamics of productivity should be noticed in order to have unbiased result for estimation of factor shares. Also for the industrial of tomato production process and increment of use of agricultural machinery, it is necessary to take policy decitions and create tax incentives in order to reach the acceptable situation in tomato farms of Iran and Replacement of traditional farming with mechanized agriculture.
1- ابونوري ا. تاجدين ع. 1383. برآورد اثر تورم بر نابرابري در توزيع هزينه ايران با استفاده از روش ناپارامتريكي (سال1380-1350). تحقيقات اقتصادي تابستان 65(14): 165-184.
2- آمارنامه کشاورزي. 1378-1386. وزارت جهاد کشاورزي. معاونت اقتصادي و برنامه ريزي. دفتر آمار و برنامه ريزي اطلاعات. تهران.
3- باغاني. ج و بيات. ح. 1378. بررسي و مقايسه دو روش آبياري شياري و قطره¬اي بر عملکرد و کيفيت گوجه-فرنگي. گزارش پژوهشي موسسه تحقيقات فني و مهندسي کشاورزي. نشريه شماره 131
4- تركماني ج. وزيرزاده س. 1386. تعيين حق بيمه محصولات کشاورزي کاربرد روش ناپارامتريک. اقتصاد كشاورزي (اقتصاد و كشاورزي)1(1): 83-100.
5- حسن پور اصطهباناتي ا. 1387. نگاه اقتصادي به توليد گوجه فرنگي و ميزان آب مصرفي. اولين كنگره ملي فناوري توليد و فرآوري گوجه فرنگي. مركزتحقيقات كشاورزي و منابع طبيعي خراسان رضوي. مشهد
6- حسين زاد ج. سلامي ح. 1383. انتخاب تابع توليد براي براورد ارزش اقتصادي آب كشاورزي مطالعه موردي توليد گندم. اقتصاد كشاورزي و توسعه . 48(12) : 53-74
7- خزاعي ه. سبحاني ع. کاخکي ع و وفايي ب. 1387. مقايسه كيفيت بذر ارقام استاندارد گوجه فرنگي در تاريخهاي برداشت متفاوت. اولين كنگره ملي فناوري توليد و فرآوري گوجه فرنگي. مركزتحقيقات كشاورزي و منابع طبيعي خراسان رضوي. مشهد
8- دانشور كاخكي. م، گلريز ضيائي. ز؛ رضوي ه. 1387. بررسي بهره وري گوجه فرنگي دراستان خراسان رضوي. اولين كنگره ملي فناوري توليد و فرآوري گوجه فرنگي. مركزتحقيقات كشاورزي و منابع طبيعي خراسان رضوي. مشهد
9- رحيمي ز. خبازي ح. يوسف نژاد م. 1387. روش جديد مبارزه با آفات گلخانه اي ازن جايگزين مناسب سموم شيميايي در دفع آفات، اولين كنگره ملي فناوري توليد و فرآوري گوجه فرنگي. مركزتحقيقات كشاورزي و منابع طبيعي خراسان رضوي. مشهد
10- رحيمي سوره ص. صادقي ح. 1383. عوامل موثر بر كارايي و اقتصاد مقياس در رهيافت هاي پارامتري و ناپارامتري (مطالعه موردي: طرح هاي مرتعداري در ايران). تحقيقات اقتصادي، 21(67): 259-291.
11- رفعتي م. آذرينفر ي. زاد م. برابري ع. كاظم نژاد م.1390. بررسي كارايي فني. تخصيصي و اقتصادي پنبه كاران استان گلستان با استفاده از روش پارامتريك (مطالعه موردي شهرستان گرگان). تحقيقات اقتصاد كشاورزي. 3(1): 121-142.
12- زراء نژاد م. يوسفي حاجي آباد ر. 1388. ارزيابي كارآيي فني توليد گندم در ايران (با استفاده از دو رهيافت پارامتريك و ناپارامتريك). پژوهشهاي اقتصادي. 9(2): 145-172
13- زمردي. ش و نورجو. ا. 1385. بررسي اثر کمآبياري در کميت،کيفيت و قابليت نگهداري گوجه فرنگي. مجله علمي – پژوهشي تحقيقات مهندسي کشاورزي. شماره 27. ص 19-31.
14- صدرقاين ح. اکبري م. افشار ه و نخجواني مقدم م.م. 1389. اثر سه روش آبياري ميکرو و سطوح مختلف آبياري بر عملکرد گوجه¬فرنگي. نشريه آب و خاک. جلد 24. شماره 3. مرداد و شهريور 1389. صص 574-582.
15- شيرين بخش ش. نصابيان ش. 1382. تعيين کارايي اقتصادي واحدهاي توليد کننده کشاورزي. پژوهش نامه اقتصادي. 10و11: 89- 108.
16- عادلي ساردوئي م. شريفيو ا. عليزاده. ح. 1387. برآورد تابع توليد انعطاف پذير گوجه فرنگي و بررسي مصرف اقتصادي نهاده ها (مطالعه موردي گوجه فرنگي كاران شهرستان جيرفت). اولين كنگره ملي فناوري توليد و فرآوري گوجه فرنگي
17- قرايي. ح و رضايي. ع (1384) اثرات کودهاي باکتوسول، اوره و فسفات آمونيوم بر کميت و کيفيت گوجه فرنگي. چهارمين کنفرانس علوم باغباني. دانشگاه فردوسي مشهد. مشهد.
18- كردبچه ح. 1390. تخمين شبه پارامتريک استوار در تعيين عوامل ناکارايي در نظام بانکي ايران: روش بوت استرپ. تحقيقات اقتصادي.46(95): 159-192.
19- گجوراتي د. 1385. مباني اقتصادسنجي. ترجمه حميد ابريشمي. چاپ چهارم. انتشارات دانشگاه تهران. تهران
20- مجرد ع. كهخا ا. صبوحي صابوني م. 1388. معرفي راه کار ناپارامتريک تصادفي در تخمين کارايي فني: مطالعه موردي واحد هاي مرغداري در منطقه سيستان. اقتصاد كشاورزي (اقتصاد و كشاورزي) 3(3): 91-106.
21- محمدي ح. 1387. معرفي روش جديد كشت بذر گوجه فرنگي در خزانه. اولين كنگره ملي فناوري توليد و فرآوري گوجه فرنگي
22- مرادي شهربابك ح. 1390. تعيين کارايي توليدکنندگان بادام استان کرمان (مطالعه موردي شهرستان سيرجان). تحقيقات اقتصاد كشاورزي.3(2):117-132.
23- مظهري. م. 1387. اندازه گيري بهره وري عوامل توليد محصول گوجه فرنگي. اولين كنگره ملي فناوري توليد و فرآوري گوجه فرنگي
24- Arellano, M., and S. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58: 277–297.
25- Arellano, M., and O. Bover. 1995. Another look at the instrumental variable estimation of error-components models. Journal of Econometrics 68: 29–51.
26- Atiyeh, R. M., Arancon, N. Q., Edwards, C. A. & Metzger, J. D. (2000a). Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, 75, 175–180.
27- Ayars, J. E., R. A. Schoneman, F. Dale, B. Meso and P. Shouse. 2001. Managing subsurface drip irrigation in the presence of shallow ground water. Agric. Water Manage. 47(3): 243-264.
28- Blundell, R., and S. Bond. 1998. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87: 115–143.
29- ———, 2000. GMM estimation with persistent panel data: An application to production functions. Econometric Reviews 19: 321–340.
30- Davis, Steven J & Haltiwanger, John C, 1992. "Gross Job Creation, Gross Job Destruction, and Employment Reallocation," The Quarterly Journal of Economics, MIT Press, vol. 107(3), pages 819-63, August.
31- Deschenes, O. and Greenstone, M. 2011. Using Panel Data Models to Estimate the Economic Impacts of Climate Change on Agriculture, Handbook on Climate Change and Agriculture, Edited by Ariel Dinar and Robert Mendelsohn, Edward Elgar Publishing.
32- Dickey, D.A. and W.A. (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root,” Journal of the American Statistical Association, 74, p. 427–431.
33- Du II, Shengwu, 2004, Nonparametric and Semi-parametric Estimation of Efficient Frontier, Department of Agricultural Economics,Penn State University, 308 armsby university park, PA 16802
34- Dunne, T. & Roberts, M.J. & Samuelson, L., 1988. "Firm Entry And Post-Entry Performance In The U.S. Chemical Industries," Papers 7-88-2, Pennsylvania State - Department of Economics.
35- Engle R.F, Granger W J, Rice J, Weiss A J, 1986, Semiparametric Estimates of the Relation Between Weather and Electricity Sales ournal of the American Statistical Association Vol. 81, No. 394 (Jun., 1986), pp. 310-320.
36- Ericson R, Pakes A, 1995. Markov-Perfect Industry Dynamics: A Framework for Empirical Work, The Review of Economic Studies, Vol. 62, No. 1. 1995, pp. 53-82, Published by: Oxford University Press
37- Federico, A., Gutierrez-Miceli, Santiago-Borraza, I., Adolfo Montes, J., Camerino, C., Abud-Archila, M., Angelam, M., Llaven, A., Reiner, Rincon-Rosales, & dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yeild and fruit quality of tomato (Lycopersicum esculentum). Bioresources.Technology, 98, 2781-2786
38- Griliches, Zvi. 1957. “Specification Bias in Estimates of Production Functions.” Journal of Farm Economics. February, (39):1 8–20
39- Griliches, Z., and J. Mareisse. 1998. Production functions: The search for identification. In Econometrics and Economic Theory in the Twentieth Century: The Ragnar Prisch Centennial Symposium, 169–203. Cambridge: Cambridge University Press.
40- John R, Baldwin & Paul K. Gorecki, 1989. "Firm Turnover and Market Structure: Concentration Statistics as a Misleading Practice," Working Papers 762, Queen's University, Department of Economics
41- Kao, C. (1999). “Spurious Regression and Residual-Based Tests for Cointegration in Panel Data,” Journal of Econometrics, 90, 1–44.
42- Koteswara, R. P., R. V. Singh, and H. S. Chauhan. 1995. Field studies on drip and other methods of irrigation on yield and water use of tomato . Proceeding of the fifth- international micro irrigation congress, Hyatt Regency Orlando, Florida, Published by Amer. Soc. Agr. Eng
43- Heady, F. O. and J. T. Dillon. 1989. Agricultural Production Function. Iowa Stae University Press. ISBN 81-1096-12-7.
44- Lacroix, L. and Thomas, A. 2011. Estimating the Environmental Impact of Land and Production Decisions with Multivariate Selection Rules and Panel Data. American J. of Agricultural Economics, Volume 93, Issue 3, PP. 784-802
45- Levin, A., C. F. Lin, and C. Chu (2002). “Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties,” Journal of Econometrics, 108, 1–24.
46- Lewis, W. Arthur (1954). “Economic Development with Unlimited Supplies of Labor,” Manchester School of Economic and Social Studies, Vol. 22, pp. 139-91.
47- Maddala, G. S. and S. Wu (1999). “A Comparative Study of Unit Root Tests with Panel Data and A New Simple Test,” Oxford Bulletin of Economics and Statistics, 61, 631–52.
48- Manfrinato, H. A. 1974. Drip irrigation,Part II, Effection on tomato yield. Analis Aa Escola Superir De Agricultura.31: 63-71.
49- Marschak, J., and W. H. Andrews. 1944. Random simultaneous equations and the theory of production. Econometrica 12: 143–205.
50- Martínez-Ruiz M.P., A. Mollá-Descals, M.A. Gómez-Borja, J.L. Rojo-Álvarez, 2006 "Evaluating temporary retail price discounts using semiparametric regression", Journal of Product & Brand Management, Vol. 15 Iss: 1, pp.73 – 80
51- Mian, M. A. R., and Nafziger, E. D. 1994. Seed size and water potential affect on germination and seedling growth of winter wheat. Crop Science 34:169-171.
52- Mossa, Charles B. and Schmitz, Troy G. 2006, A semiparametric estimator of the Zellner production function for corn: fitting the univariate primal, Applied Economics Letters, Volume 13, Issue 13, pages 863-867
53- Mundlak,Y. and Butzerb, R. and Larsonc, D.F. (2012) Heterogeneous technology and panel data: The case of the agriculturalproductionfunction. Journal of Development Economics, Volume 99, Issue 1, September 2012, Pages 139–149.
54- Nagavallemma, K. P., Wani, S. P., Stephane Lacroix, Padmaja, V. V., Vineela, C., Babu Rao, M. & Sahrawat, K. L. (2006). Vermicomposting: Recycling wastes into valuable organic fertilizer. (Report no. 8. Patancheru 502 324), Global Theme on Agrecosystems, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.
55- Olley, G. S., and A. Pakes. 1996. The dynamics of productivity in the telecommunications equipment industry. Econometrica 64: 1263–1297.
56- Osorio, U., H. Torres, and M. Riva,1983. Yields of tomato (Lycopersicon esculentum, Mill.) with drip irrigation or straight or winding furrow irrigation in the Azapa valley. Idesia 7.
57- Pakes, A. 1994, The Estimation of Dynamic Structural Models: Problems and Prospects, Part II. Mixed Continuous-Discrete Control Models and Market Interactions," Chapter 5, pp. 171-259, of Advances in Econometrics: Proceedings of the 6th World Congress of the Econometric Society, edited by J.J. Laont and C. Sims.
58- Pedroni, P. (2004). “Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis,” Econometric Theory, 20, 597 625.
59- Pedroni, P. (1999). “Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors,” Oxford Bulletin of Economics and Statistics, 61, 653–70.
60- Restuccia, G. and V. Abbate. 1978. Comparative effects of drip and furrow irrigation on salad tomato crop in unheated, glasshouses. Rivista Di Agronomia. 12(1/2): 89- 98.
61- Robinson P M, 1988, Root-N-Consistent Semiparametric Regression, Author(s): Source: Econometrica, Vol. 56, No. 4 (Jul., 1988), pp. 931-954, Published by: The Econometric Society
62- Simar, L. and Wilson, P. 2007. “Estimation and Inference in Two-Stage, Semi-Parametric Models of Production Processes.” Journal of Econometrics 136 (2007) 31–64
63- Sims, C. A ,1980, “Macroeconomics and Reality,” Econometrica, (January 1980), 1-4
64- Sims, C. A., J. Stock, and M. W. Watson,1990, “Inference in Linear Time Series Models with Some Unit Roots,” Econometrica, (1990), pp. 113-144.
65- Singh, S.D., and P. Singh, 1978, Value of drip irrigation compared with conventional irrigation for vegetable production in a hot arid climate, Agron. J., 70(6): 945-47.
66- Thomas, W., and Russell, L. 2001. Tolerance of tomato varieties to lespedeza dodder. Weed Science 49: 520-523.
67- Tonfack, Libert Brice, Bernadac, Anne, Youmbi, Emmanuel, Mbouapouognigni, V. Paul, Ngueguim, Martin and Akoa, Amougou. 2011. Impact of organic and inorganic fertilizers on tomato vigor, yield and fruit composition under tropical andosol soil conditions. Fruits .Volume 64 .Issue 03 .pp 167-177
68- Ucal, M.; Özcan, K. M.; Bilgin, M. H.; Mungo, J. 2010. Relationship between financial crisis and foreign direct investment in developing countries using semiparametric regression approach, Journal of Business Economics and Management 11(1): 20–33.
69- Wedervang, F. 1965. Development of a Population of Industrial Firms. Scan- dinavian University Books, Oslo, Norway.
70- Wooldridge, J. 2005. On estimating firm-level production functions using proxy variables to control for unobservables. Mimeo: Michigan State University.
71- Yanqin Fan, Qi Li and Alfons Weersink, 1996, Semiparametric Estimation of Stochastic Production Frontier Models, Journal of Business & Economic Statistics, Vol. 14, No. 4 (Oct., 1996), pp. 460-468
72- Yasar, M., Raciborski, R. and Poi, B.P. 2008 Production function estimation in Stata using the Olley and Pakes method. Stata Journal 8: 221–231.
73- Zotarelli, L., J. M. Scholberg, M. D. Dukes, R. Muñoz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manage. 96(1):23-34.