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Abstract –In this paper we treat the problem of cancer control by chemotherapy, through general 
model in ordinary differential equation form of tumor dynamics. The model is augmented by an 
ordinary linear differential equation of chemotherapy drugs, and the control problem is reset in the 
framework of the viability theory. Set-valued analysis method is applied to design procedures 
leading to the formulation of treatment protocols, which are single-valued selections of set-valued 
maps, and divide in two categories according to the advancement of initial state cancer, which is 
characterized by specific set-valued map, upon the strict negativity of the dynamic tumor function 
at the initial state. Protocols corresponding to non-advanced stage cancer, ensures the decreasing 
of tumor cells, unlike the ones of advanced stage. Logistic model is considered from the literature 
to illustrate effects of feedback protocols, by which tumor cells is controlled to be on exponentially 
decreasing all over chemotherapy horizon, under normalized carrying capacity to reach 
infinitesimal values. 
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1. Introduction 
 

In the literature, there are various works on cancer 
model forms, and their chemotherapy control by different 
approaches. Optimal control theory is used to minimize the 
size of the tumor in Gompertz law, at finite time with a 
limited amount of chemotherapeutic drugs [1, 2], and for all 
the standard models for tumor development : Linear, 
Logistic, and Gompertzian types [3], and for basic general 
equations of tumor growth [4], and for Gompertz model of 
growth, under : Skipper and Holford-Sheiner hypothesis [5]. 
State dependent Riccati equation based optimal control 
technique is developed for a Gompertz model, to reduce the 
tumor growth up [6]. 

Input-state feedback linearization method is concepted 
for manipulation of chemotherapeutic drug usage, under : 
Skipper, Holford-Sheiner, and Norton-Simon hypothesis, to 
minimize tumor volume in Gompertz growth [7]. 
Maximum principle differential-geometric techniques, are 
used to minimize tumor volume at fixed time horizon [8]. 
Optimal control technique is deployed to determine the 

minimum amount of needed chemotherapy drug, able to 
reduce or eliminate the tumor mass, depicted by Gompertz 
growth, under : Skipper, Holford-Sheiner, and Norton-
Simon hypothesis [9]. Qualitative and quantitative 
differences is compared between fixed and free treatment 
duration, of optimal chemotherapeutic protocols [10]. 
Optimal cancer chemotherapy is compared between tumor 
growth models based on ordinary differential and stochastic 
equations [11]. Optimal control theory is used to produce 
expressions for the continuous-time optimal control, able to 
reduce the tumor population [12], under Gompertz growth 
equation model. Optimal treatment protocol predictions are 
given for general function fitness tradeoffs [13]. Optimal 
chemotherapy schedules minimizes the number of 
Gompertzian tumor cell populations [14]. The measure 
theoretical approach approximates optimal control and 
optimal states, solutions of : linear, quadratic, and non-
linear objectives functions, for general compartmental 
models in cancer chemotherapy [15]. Optimal 
chemotherapeutic agent controls general pharmacodynamic 
model by Michaelis-Menten type equation [16]. Optimal 
combination chemotherapy controls tumor size, satisfying a 
differential equation whose structure is based on cell kinetic 
considerations [17]. Optimal bang-bang protocols control a 
class of mathematical models based on cell-cycle kinetics, 
subject to a linear objective [18]. Singular control solutions 
solve some optimal protocol problems for simplest models 
of cancer chemotheray [19]. Hilbert uniqueness method 
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approaches linear quadratic optimal control problem, for 
compartment system model of chemotherapy cancer [20]. 
Pontryagin’s maximum principle minimizes cost function 
for cancer chemotherapeutic model in compartments form 
[21]. Moving horizon estimation and extended Kalman 
filter are compared for chemotherapy optimization [22]. 
Optimal cancer chemotherapy treatments control 
Malthusian tumor cell growth [23]. Stability theory is 
designed to characterize equilibrium tumor in Logistic 
growth, with a periodic function representing the 
chemotherapeutic effects on tumor [24], and with 
continuous constant infusion treatment [25], and to 
exponential-kill model under Norton-Simon hypothesis [26, 
27]. Qualitative analysis characterizes the global stability of 
zero and existence and uniqueness of attractive periodic 
solution, to Logistic tumor model in periodic chemotherapy 
[28]. Periodic chemotherapy drug describes acceptable 
number of doses, before Logistic tumor regrowth due to 
drug resistance [29]. Global stability of the tumor-free 
equilibrium is derived by simple condition and the 
existence, of a periodic solution is proved in the case when 
the tumor-free equilibrium was unstable, for Logistic 
integro-differential equation of tumor growing in vivo to 
periodic exposure to chemotherapy [30, 31]. Norton-
Simon-like model of chemotherapy my imply multi-
stability of tumor [32]. Lyapunov stability analysis is used 
to address the design of chemotherapeutic procedures for 
Gompertzian cancer model [33]. Composite adaptive 
control strategy reduces cancer tumor volume and identifies 
tumor parameters for three models, including : Skipper, 
Holford-Sheiner, and Norton-Simon hypothesis, during the 
drug delivery process in chemotherapy [34]. Fuzzy system 
approach is employed to program the amount of 
administrated drug, to reduce and maintain the size of 
tumor in Gompertz growth, under : Skipper, Holford-
Sheiner, and Norton-Simon hypothesis [35]. H-infinity 
optimization theory is used to concept robust control for 
three cell-kill cancer models, including : Skipper, Holford-
Sheiner, and Norton-Simon hypothesis [36]. Computational 
methods is utilized by an estimation of distribution 
algorithm and genetic algorithms, to address the 
optimization problem of cancer chemotherapy, on 
Gompertzian growth model with linear cell-loss effect [37]. 
Evolutionary algorithms are applied to multi-objective 
optimization problem of cancer chemotherapy [38], for the 
same model as in [37]. Adaptive elitist-population based 
genetic algorithm solves the problem of drug scheduling in 
cancer chemotherapy [39]. Direct optimization procedure, 
based on the Luus-Jaakola algorithm is purposed to 
minimize the size of tumor, at the end of a fixed period 

treatment by chemotherapeutic effects, outlined by Martin 
model [40, 41]. Taganchi immune algorithm is proposed for 
optimizing multi-dose drug schedules, that minimize the 
number of tumor cells [42]. Levenberg-Marquardt 
algorithm theoretically examines the efficacy of several 
clinical chemotherapeutic protocols, for exponential and 
Gompertz tumor growth [43]. Feedback controller yields in 
a strongly monotone closed-loop system and reduces the 
tumor burden to the zero value [44], and increases the 
normal and immune cell populations to reach their 
maximum possible values, of chemotherapeutic model in 
[45]. In the present work, we use from [46, 50] a set-valued 
method based on viability theory to approach a one-
dimensional model including the effects of chemotherapy 
on the tumor [24], admissible protocols reverse the tumor 
growth, to be exponentially decaying on infinite horizon. 
This paper is structured as follows : Section 2 defines the 
general model of chemotherapy, we launch there the 
associated control problem, subsequently we formulate the 
corresponding viability problem, then we use the set-valued 
analysis as approach. Section 3 stages the cancer in two 
cases following conditions on the initial state. Section 4 
investigates the model of [24], with chemotherapy 
treatment applied continuously, we present there some 
numerical simulations, which are in accordance with 
theoretical results. 

 

2. Problem and Viability Approach 

  

2.1. Control Problem 

    We consider a dynamical of ordinary differential 
equation, in the form  τ� = ψ(τ, v). 
                                              (1) 

Where the state τ stills for tumor cells density (number 
or volume), and takes values in the non-negative interval [0, ∞), with the initial condition  

 τ(0) = τ > 0. (2) 
While the control term v  stands for rate of 

chemotherapeutic agent, and takes values within the 
constraint subset  

 V = [0, v����. (3) 
The non-linear function ψ maps ℝ × ℝ into ℝ.  
The naturally arising control problem is of how to 

administer v with respect to the constraint (3), in order to 
reduce τ. 

We have to consider the following control problem  
Find a protocol v such that  

 ∀t ∈ [0, ∞), v(t) ∈ V, (4) 
for which  
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 lim�→�τ(t) = 0. (5) 

   
2.2. Viability Problem 

    It is more convenient to consider the control term v as a second variable and augment system (2.1) by the 
linear differential equation   

 v� = −γv + w, (6) 
with the initial condition  

 v(0) = v ∈ V, (7) 
and the auxiliary control  

 w ∈ W, (8) 
where  

 W = [0, γv����. (9) 
  
We will formulate the control problem (2.1) in the 

framework of the viability theory [48]. We associate with a 
non-negative real number α the subset  D& = {(τ, v) ∈ ℝ( × V | ψ&(τ, v) ≤ 0}, 
                                             (10) 

where the function ψ& depends on the function ψ of 
(1) as follows  ψ&(τ, v) = ψ(τ, v) + ατ. 
                                             (11) 

 
Proposition 1 Assume that there exists a control w: [0, ∞) → W leading to a globally viable solution (τ., v.) 

to the augmented system (2.1)-(2.2) in some subset D&, 
then v. is a protocol in the sense of the problem (2.1).  

  
Proof. Let t ≥ 0. According to (6)-(7), the solution v. 

may be expressed in function of the supplement control w 
as  

v.(t) = exp34� 5v + 6  
�

 exp47w(s) ds:, 
                                           (12) 

and the constraint (4) still satisfied by virtue of (8)-(9)  ∀t ∈ [0, ∞), v.(t) ∈ V, 
                                           (13) 

By (1) and (2.2) we have the differential inequality  τ.� (t) = ψ(τ.(t), v.(t)) ≤ −ατ.(t), 
                                           (14) 

and by applying Gronwall’s Lemma we get the 
exponential estimate  

 0 ≤ τ.(t) ≤ τexp(−αt), 
then  

 lim�→�τ.(t) = 0. 
 
Remark 1 The viability of the solution (τ., v.) in the 

subset D& , requires that the initial state data (τ, v) 

belongs to D& too. But we will deal with this necessary 
condition in Section 3.  

  
Remark 2 The tumor cells density τ. will be on the 

decreasing because of (14), which is beneficial to the 
patient quality of life during the treatment.  

  
Remark 3 System (2.2) is introduced for mathematical 

reasons : (13), (17), (18), and (19), but this augmentation 
can be biologically considered as the rate of change in the 
amount of the concentration v of chemotherapy drug over 
time, with proportional decays out of the system (2.1) 
trough the term −γv, and outside source term of treatment w.  

  
2.3. Set-valued Analysis 

    We associate with the augmented system (2.1)-
(2.2), the set-valued map ;< of regulation defined on the 
constraint viability domain =< (10) in the following way  

 

 

;<(>, ?) = {@ ∈ A    | (B(>, ?), −C? + @)D
∈ EFG(>, ?)}.  (15) 

 
where 

 

 

EFG(>, ?) = {(>̅, ?̅) ∈ ℝ × ℝ
    | liminfK↓

MNG(O(KO.,P(KP.)
K= 0}.

 (16) 

stands for the tangent cone to the subset =< at point (>, ?).  
 
Lemma 1 Let be α  such that (τ, v) ∈ D& . The 

augmented system (2.1)-(2.2) is locally viable in the 
constraint viability domaine D&  if and only if for all (τ, v) ∈ D&, there exists w& ∈ W, such that  

 (ψ(τ, v), −γv + w&)D ∈ TRS(τ, v). 
i.e., if and only if the set-valued map ;< is strict, and 

the single-valued selection @<  of ;<  leads to a global 
viable solution.  

  
Proof. Let @<: =< → A be a single-valued selection of 

the set-valued map ;<, such that the control @ = @<(>, ?), 
leads to a local viable solution (>̅, ?̅) to the augmented 
system (2.1)-(2.2) in =<, over a maximal interval [0, T̅). 
We have to prove that T̅ = ∞. Indeed, assume that T̅ < ∞. 
As >̅ is a non-negative decreasing function, we have  

 >̅(T) → >̅(T̅)   @ℎWX   T → T̅3. 
By (6), (8), and (9) we have  
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|?̅� (T)| ≤ C?̅(T) + @(T)≤ C?̅(T) + C?���, 

then by applying Gronwall’s Lemma we get the 
exponential estimate  |?̅(T)| ≤ (? + ?���)exp(CT), 
                                             (17) 

Then ?̅(T) has a limit denoted by ?̅(T̅) when T → T̅3. 
Therefore  

 (>̅(T), ?̅(T)) → (>̅(T̅), ?̅(T̅)) 
when T → T̅3, 
and (>̅(T̅), ?̅(T̅)) belongs to =<  because it is closed. 

Now, by considering (>̅(T̅), ?̅(T̅))  as an initial state it 
follows that (>̅, ?̅) may be prolonged to a viable solution (>̅, ?̅)  in =< , starting at (>̅(T̅), ?̅(T̅))  on some interval [T̅, T���) where T��� > T̅, which is in contradiction with 
the maximality of T̅ , then the solution (>̅, ?̅)  becomes 
globally viable in =<.  

Now to give an explicit expression to the tangent cone EFG (16), we appeal the following Lemma [46].  

 
Lemma 2 If the function ψ& in (11) is continuously 

differentiable on D&, and admits a partial derivative ∂ψ& 
strictly negative on D& . Then for each (τ, v) ∈ D&  the 
tangent directions (τ., v.) of TRS(τ, v) are characterized by  

 

Z[
\   τ. ≥ 0    if    τ = 0,  v. ≥ 0    if    v = 0,  v. ≤ 0    if    v = v���,ψ� &(τ, v)(τ., v.) ≤ 0    if   ψ&(τ, v) = 0.

] 
 
Corollary 1 For each (τ, v) ∈ D&  the tangent 

directions (τ., v.)  of TRS(τ, v)  are characterized by 

reduced inequalities  
 

^   τ. ≥ 0    if    τ = 0,ψ� &(τ, v)(τ., v.) ≤ 0    if   ψ&(τ, v) = 0. ] 
 

  
Proof. Thanks to equation (6)   

    • If ? = 0,  
then  

 −C? + @ = @ ≥ 0. (18) 
    • If ? = ?���,  

then 

 

−C? + @ = −C?��� + @≤ −C?��� + @���
≤ −C?��� + C?���
≤ 0.

 (19) 

To give a useful expression to the set-valued map ;< 

(15), we need to consider the following assumption.  
 
Assumption 1   ∀(>, ?) ∈ ℝ( × [0, ?����, B(>, ?) ≥ 0   _`   > = 0. 
 
And we set functions ℎ and ℓ by expressions   

 ℎ(>, ?) = bPB(>, ?), (20) 
and  ℓ(>, ?) = B(>, ?)bOB(>, ?) − C?bPB(>, ?). 

                                             (21) 
   
Proposition 2 If Assumption 1 is satisfied then the set-

valued map F& may be expressed explicitly on the subset D& as  
 F&(τ, v) =

^W  if ψ(τ, v) + ατ < 0,W&(τ, v)  if ψ(τ, v) + ατ = 0, ] (22) 

 with  

 
A<(>, ?) = {@ ∈ A    | ℎ(>, ?)@ + ℓ(>, ?)+ dbOB(>, ?) ≤ 0}. (23) 

 
Proof. For all (>, ?) ∈ =< we have  

 B�<(>, ?)(B(>, ?), −C? + @) = 〈∇B<(>, ?), (B(>, ?), −C? + @)D〉= B(>, ?)bOB<(>, ?)−C?bPB<(>, ?)+@bPB<(>, ?),
 

by (11)  B�<(>, ?)(B(>, ?), −C? + @) = B(>, ?)bOB(>, ?)+dbOB(>, ?)−C?bPB(>, ?)+@bPB(>, ?),
 

then by (2.3)  

 
B�<(>, ?)(B(>, ?), −C? + @) = ℎ(>, ?)@+ℓ(>, ?)+dbOB(>, ?). 

 

Lemma 3 A continuous single-valued selection of the 
set-valued map F& may be given on the subset D& by the 
expression  @<(>, ?) = hiG(O,P)(0), 
                                         (24) 

where h denotes the operator of best approximation.  
 

3. Cancer Stage 

  We introduce the set-valued map Ω defined for each > ∈ ℝ( by  
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Ω(>) = {? ∈ k | B(>, ?) < 0}, 
                                            (25) 

where B is the function (1), and k is the set constraint 
(3), and we denote by ?  its minimal single-valued 
selection given for all > ∈ ℝ( by  ?(>) = hl(O)(0). 
                                           (26) 

  
Theorem 1 Assume that the subset Ω(τ) (25) is non-

empty at the initial tumor state τ: Ω(τ) = ∅. Let be the 
minimal initial control v = v(τ) given by (26), and a 

parameter α ∈ (0, α�, where α = 3n(op,qp)op > 0. 

The continuous single-valued selection @<  (24) 
provides global viable solution (>̅, ?̅) on the subset =<, 
with protocol solution ?̅ (12) of the control problem (2.1).  

  
Proof. d ∈ (0, d� implies that the initial state (>, ?) 

belongs to the subset =< , the continuous single-valued 
selection @< (24) given in Lemma 3, leads to a solution (>̅, ?̅), which is globally viable on =<, then by Proposition 
1, the component ?̅ is a protocol.  

We associate with a non-negative real number r, the 

set-valued map Ast defined by  

 
Ast(>, ?) = {@s ∈ A    | ℎ(>, ?)@s + ℓ(>, ?)+ r ≤ 0}.  (27) 

where ℎ and ℓ are functions given by (20) and (21) 
respectively.  

 
Theorem 2 Assume that the subset Ω(τ) (25) is empty 

at the initial tumor state τ: Ω(τ) = ∅. Let be a time t̅ > n(op,qp)u  where : the initial control v ∈ V (3), and β a 

parameter for which the set-valued map Wsu (27) is strict, 

and let (τ., v.) the solution to the augmented system (2.1)-
(2.2) on the interval [0, t̅�, by the minimal single-valued 

selection ws u of the set-valued map Wsu defined by  

 @st(>, ?) = his w(O,P)(0). (28) 

We have Ω(>̅(T̅)) ≠ ∅, with the corresponding control ?̅ (12) on the model (2.1) over the interval [0, T̅�.  
  

Proof. By (1) we have  B(>̅(T̅), ?̅(T̅)) = B(>, ?)
+ 6  

y̅
 [>̅�(z)bOB(>̅(z), ?̅(z))

+?̅� (z)bPB(>̅(z), ?̅(z))� dz,
 

then by (20) and (21) we get  

B{>̅(T̅), ?̅(T̅)| = B(>, ?)
+ 6  

y̅
 [ℎ(>̅(z), ?̅(z))@st(>̅(z), ?̅(z))

+ℓ(>̅(z), ?̅(z))� dz,
 

since @st is a single-valued selection of the set-valued 

map Ast then we have  

 B(>̅(T̅), ?̅(T̅)) ≤ B(>, ?) − rT̅, 
as rT̅ > B(>, ?) it follows that B(>̅(T̅), ?̅(T̅)) < 0.  

  
Remark 4 Note that the decreasing of the tumor cell 

density τ.  is uncertain on [0, t̅� , and may be 
disadvantageous to the patient quality of life in the 
beginning of treatment. 

Indeed, otherwise for all [0, T̅�  we will have B(>̅(T), ?̅(T)) = >̅�(T) ≤ 0, particularly for T = 0 we will 
have B(>, ?) ≤ 0, which is absurd.  

The existence’s protocol depends on initial state (>, ?) of the augmented system (2.1)-(2.2), closely to the 
non-emptiness of the subset Ω(>) of k . This leads to 
stage the cancer as follow :   

• Ω(>) ≠ ∅ : As Theorem 1, there exists an element ? ∈ Ω(>), minimal in norm, such that (>, ?) ∈ =<, and 
by Remarks 1 and 2 the protocol ?̅ will decreases the 
tumor cells density >̅ on [0, ∞). We then say that the 
tumor is on non-advanced stage.  

• Ω(>) = ∅ : As Remark 3, the augmented system 
(2.1)-(2.2) must be firstly steered to the non-advanced stage 
at time T̅ , but the used control ?̅  cannot ensures the 
decreasing of tumor cells density >̅ on [0, T̅�. We then say 
that the tumor is on advanced stage.  

  

4. Application Example 

  We consider the ode model in [24], to control tumor 
cells density >(T) , continuously by chemotherapy drug ?(T), over time T.  

 >� = >([1 − ?� − >). (29) 
The dynamic function B in (1) is expressed as  

 B(>, ?) = >([1 − ?� − >), 
which will verify the non-negative condition in 

Assumption 1  
 B(0, ?) = 0, 

and the negative condition in Lemma 2  
 bPB<(>, ?) = −> < 0. 

The numerical simulation in this research is illustrated 
in three graphs. We solve equation (29) with null control ? = 0, Figure 1 pictures the Logistic tumor cells density > 
from the initial state > = 2 to the non-null limit state limy→�>(T) = 1 > 0 , in absence of chemotherapy 
treatment. We solve equation (29) coupled with equation 
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