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Abstract –This paper was dealt with the optimization of energy for tracking the magnetic 

levitation ball by using the technique of State-Dependent Riccati Equation. The magnetic 

levitation ball is widely used in various fields. This system includes a steel ball suspended by 

electromagnetic force. The differential equations of this system are nonlinear. Generally, first, 

these nonlinear equations are linearized around an equilibrium point. Then, a Linear Quadratic 

Tracker controller is designed for this system. Note that this system has a non-zero equilibrium 

point. However, in the technique of State-Dependent Riccati Equation, the nonlinear equations are 

linearized by using the method of State-Dependent Coefficients. If the system is pointwise 

stabilizable and detectable, the State-Dependent Riccati Equation has an answer. Then, an optimal 

control law is extracted so that the energy of tracking is minimized. In the end, it has been shown 

that four different trajectories are tracked appropriately using the proposed method. 

 

Keywords: Magnetic levitation ball, Optimization energy for tracking, State-Dependent Riccati 

Equation, State-Dependent Coefficients 

 

1. Introduction 

 

The magnetic levitation ball has special nonlinear 

features. Using the electromagnetic force, a metal ball is 

suspended in space and at the desired altitude. Therefore, it 

is a great challenge for control engineers. The magnetic 

levitation ball is widely used in various fields. These 

include a fast electric passenger train, frictionless bearings, 

the elastic suspension system for wind tunnel to test missile 

and airborne and so on. Due to the unstable of the magnetic 

levitation ball, designing a controller for tracking is very 

important. Generally, first, these nonlinear equations are 

linearized around an equilibrium point. Note that this 

system has a non-zero equilibrium point. Then, a Linear 

Quadratic Regulator( LQR) controller is designed for this 

system. 

In 2004, Scott C. Beeler solved the nonlinear 

quadratic regulator problem with the State-Dependent 

Riccati Equation (SDR) method [1]. In [2], Hosseini et al. 

designed a fuzzy-sliding controller for the magnetic 

levitation ball. In [3], Mária Hypiusová and Jakub Osuský 

in 2010 developed the design of the PID controller for the 

SISO system. This paper, the practical application of the 

proposed method for designing a PID controller for the 

magnetic levitation ball system. In 2013, Bharat Bhushan, 

in [4], investigated and implemented an indirect adaptive 

control law on nonlinear systems using the Takagi-Sugen 

fuzzy system. In [5], Bharat Bhushan, in 2013, examined 

and implemented the direct comparative control stability of 

nonlinear systems using the Lyapunov function with a 

fuzzy approach. This paper, the practical application of the 

proposed method for controlling the robot magnetic 

suspension. In [6], the variable structure control theory was 

utilized to derive a discontinuous controller to the magnetic 

levitation ball. In [7], it was discussed to synthesize an 

interval type-2 fuzzy logic PID and type-1 fuzzy logic 

controllers to keep a metal ball suspended in mid-air by 

changing the field strength of an electromagnet coil. In [8], 

the mathematical modelling and simulation results of a 

dynamic non-linear magnetic levitation ball were presented 

upon which state-space modelling was implemented to 

achieve linearized and precise position results. In [9], an 

adaptive proportional-integral-derivative control system 
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was developed to deal with the metallic sphere position 

control of a magnetic levitation ball, which is an intricate 

and highly nonlinear system. The proposed control system 

consisted of an adaptive PID controller and a fuzzy 

compensation controller. [10] presented an infinite-horizon 

optimal controller based on a state-dependent Riccati 

equation approach to solve the tracking for nonlinear 

systems. In [11], a nonlinear controller was designed for a 

Magnetic levitation ball. The proposed controller was used 

input-output feedback linearization using differential 

geometry in conjugation with a linear state feedback 

controller in the outer loop to levitate a ferromagnetic ball. 

In [12], the tracking control problem of the magnetic 

levitation ball was considered. Three types of nonlinear 

tracking strategies were proposed: position-velocity-flux 

feedback, position-velocity feedback, and position feedback. 

In [13], an electromagnetic levitation system was used with 

a synchronous motor to navigate the control rod of a small-

type research reactor. Also, a controller was designed using 

state feedback and state feedback integral tracking methods. 

This paper proposes the SDRE technique for optimal 

tracking of the magnetic levitation ball. The control law is 

extracted from solving the Hamilton-Jacobi-Bellman 

equation for the state-dependent coefficient (SDC) 

factorized nonlinear system. 

2. The magnetic levitation ball system 

In the magnetic levitation ball system, the steel ball is 

suspended in space with electromagnetic force. The block 

diagram of the magnetic levitation ball system is shown in 

figure (1). In addition, the components of this system are 

given in table (1). 

 

 

 

 

 

 

 

 

 
 

Fig. 1.Block diagram of the magnetic levitation ball system 

 

 

Table 1. Components of the magnetic levitation ball  

Nomenclature 

 

It regulates the new altitude of 

the magnetic levitation ball.  

SetPoint  

A sensor detects the altitude of 

the magnetic levitation ball. 

Photo 

Receiver  

A sensor declares the new 

altitude of the magnetic levitation 

ball to the regulator. 

Photo 

Emitter  

According to the altitude of the 

ball, it controls the input current. 

Controller  

It acts as an input amplifier. Drive 

Amplifier  

An electric magnet adjusts the 

altitude of the magnetic levitation 

ball. 

Electroma

gnet  

A steel ball is in the magnetic 

field. 

Ball  

 

 

In this system, it is assumed: 

1. The magnetic flux is uniform in the space between 

the electric magnet and the levitation ball. 

2. The cross-section of the ball and the Magnet core is 

equal. 

3. The leakage of flux is insignificant in the electrical 

magnet. 

Therefore, first, the altitude of the ball is measured by 

the sensor. Then, the controller adjusts a required current by 

the coil to the ball can track the desired altitude. An 

equivalent circuit of the magnetic levitation ball system can 

be considered as Figure (2). Also, tables (2), (3) show the 

magnetic levitation ball system parameters. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. The equivalent circuit of the magnetic levitation ball system 
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Table 2Parameters list of the system 

Nomenclature 

Mass of the steel ball  m 

The distance between the ball and 

the magnet core  

y 

The inductance coefficient of the 

coil  

L 

The winding resistance   R 

current electricThe   i 

T he input voltage  u 

 
Table 3The parameter value of the system[13] 

 

 

 

 

 

 

 

The state equations of the system are given as 

follows[13]: 

(1) �. ��
��� � = �� − 
�

�  

(2)  �(�) = �
(�) + � �
�� 

Notice that the magnetic levitation ball system has not a 

zero point of equilibrium. Therefore, by choosing the 

following state variables, the state equations are extracted 

with a zero point of equilibrium. 

 

 

(3) 
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�
��
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(4)  ��
�
��

���  =  ��
��� = ����� + �� − ��� + 2�������� ��� !"#

���  =  − �� �� +    ��
� 

 

3. A proposed method for optimal tracking of the 

nonlinear system 

In this section, we propose a method for the optimal 

tracking problem. The purpose is to track the desired 

trajectory to minimize a square performance index. The 

SDRE technique provides a method for optimal tracking 

problem solving for a certain class of nonlinear systems. 

Consider the following nonlinear system: 

(5) $�� = %(�) + &(�)�   , �(��) = ��� = ((�) � 
 

Where � ∈ �*, � ∈ �+, � ∈ �,, %(�) ∈ �*,&(�):  ℜ* → ℜ
*×+, ((�) ∈ �*  and �� ∈ �* is the initial 

condition. Also, x = 0 is the hyperbolic equilibrium point.In 

the SDRE technique, nonlinear systems are presented as 

state-dependent coefficients. Therefore, assuming 

that  % (. )∈/�(ℜ*), ( (. )∈/�(ℜ*), %(0*×�) = 0*×�,((0*×�) = 0,×� , there is always a quasi-linear 

representation %(�) = 2(�)�  and ((�) = /(�)� .Where, 2(�):ℜ* → ℜ
*×*

and /(�):ℜ* →
ℜ

,×*
are unique for n> 1.An appropriate choice for the 

matrix 2(�) and  /(�) is 2(�) = 3 4546|6896 �:�� ,  /(�) =
3 4;46|6896 �:�� where α is an additional variable, and it is 

usually used only for integration[1]. 

Theory: For the nonlinear system (6), the control law 

for optimal tracking with the performance index (7) is (8). 

(6) $�� = %(�) + &(�)�   , �(��) = ��� = ((�) � 
(7) < = =��(�>)# − ?(�>)@A B> =��(�>)# − ?(�>)@

+ C ((� − ?(�))AD(�)(�EF
E"− ?(�)) + �A�(�)�)�� 

(8) �
Where B> , D(�):ℜ* → ℜ

+×+
and �(�):ℜ* →

ℜ
+×+

are the semi-positive definite and positive definite 

matrices,respectively. If the pair {A(x), B(x)} and {A(x), 

C(x)} be point wise stabilizable and detectable for ∀x. In 

addition, if the closed loop 

matrix  2(�) − &(�)�H�(�)&A(�)I(�)  be Hurwitz for ∀� ∈ Ω , then SDRE has an answer. Ω  are points where 

the lyapunov function J(�) = �A =3 :I(:�)�:�� @ �  is a 

locally lipschitz function [1]. 

(9) I� (�) + I(�)2(�) + 2A(�)I(�) −I(�)&(�)�H�(�)&A(�)I(�) +/A(�)D(�)/(�) = 0*×*,  I��(�>)# = /A��(�>)#B>/��(�>)# 

(10) K�(�) + �2(�) − &(�)�H�(�)&A(�)I(�)#AK(�)+ /A(�)D(�)?(�) = 0*×�,  K��(�>)# = /A��(�>)#B>?(�>) 
 

value Parame

ter  

0.05kg m 

9.8
L+MN g 

10Ω R 

1H  L 
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Proof: 

In the tracking problem, the control law u is extracted to 

minimize the performance index J. Also, � is converged to 

the desired trajectory of ?(�) .In the first step, a 

Hamiltonian function ℋ for the auxiliary vector λ∈�* is 

defined as follows: 

(11) ℋ(�, �, �) = 12 (� − ?(�))AD(�)(� − ?(�))
+ 12 �A�(�)�
+ λ

A(%(�) + &(�)�) 
According to the optimal control theory, the conditions 

for optimization are as follows. 

(12) �� = QRℋ∂T UV = %(�) + &(�)� , �(��) = �� 

 

 

 

 

 

(13) 

λ� = − QRℋ∂� UV = −(6(�)A. D(�)�� − ?(�)#
− 12 �((�) − ?(�)#A RD(�)R� �((�)
− ?(�)# − 12 �A RR∂�  � − %6(�)Aλ
− λ

A RB∂� � ,  
λ(�>) = 12 Q(6AB> =(��(�>)# − ?(�>)@UA

 

(14) 0 = RℋR� = �(�)� + &A(�)λ 

From Equation (14), since B(x) and R (x) are non-zero, 

the optimal control law will be proportionate to the vector λ. 

(15) � = −�H�(�)&A(�)λ 
By choosing the SDC representation ofλ(�) = I(�)� −K(�) and by derivation of λ(�) can write: 

(16) λ� = I(�)�� + I� (�)� − K�(�) 
WhereI(�) is a symmetric, unique and positive definite 

matrix. By placing (15) and (16) in (13), we have: 

 

 

 

 

 

 

 

(17

) 

YI� (�) + I(�)2(�) + 2A(�)I(�)− I(�)&(�)�H�(�)&A(�)I(�)+ /A(�)D(�)/(�)Z� − 
[K� (�) + �2(�) − &(�)�H�(�)&A(�)I(�)#AK(�)

+ /A(�)D(�)?(�)\ 
 

]∑ �_*_8� Q4`a46 (�)UA �I(�)� − K(�)# +
∑ �_*_8� Q4ba46 (�)UA D(�)(((�) − ?(�)) +
�� ∑ ((((�) − ?(�))A)_*_8� 4ca46 (�)(((�) − ?(�)) +

�� ∑ Q�(I(�)� −+_8�
K(�))A&(�)�H�(�)#_ 4da46 (�)U �H�(�)&A(�)�I(�)�
K(�)# −
∑ e�(I(�)� −+_8�
K(�))A&(�)�H�(�)#_ Q4fa46 (�)UAU �I(�)� −
K(�)#g = 0*×*, 

 I��(�>)# = /A��(�>)#B>/��(�>)#,   K��(�>)# = /A��(�>)#B>?(�>) 
 

 

Where the partial derivative for A(x), B(x),C(x),Q(x) 

and R(x) are defined as follows: 

 

 

(18) 

 

 

Rh_R� =
i
jk

Rh�_ R��l … Rh�_ R�*l⋮ ⋱ ⋮Rh*_ R��l … Rh*_ R�*l p
qr 

The first part is called a state-dependent reticulate 

equation (SDRE). The second part is the generalized 

tracking of LTI systems for nonlinear affine systems. The 

third part is usually neglected from the interior of [1] 

because of its small magnitude. 

 

4. Simulation results 

By comparing the relations (4) and (5) for the magnetic 

levitation ball system,2(�), %(�), &(�) and ((�)are determ

ined as 2(�) = 3 4546|6896 �:�� , 
%(�) = Q��, s6t6t !" − 6uN �6u�+s!"+ �6tvw"# ,  − dx ��UA

, &(�) =
=0, 0, �x@A

 and � = ((�) =
��, respectively. In this section, for four different trajectorie

s(constant, sinusoidal, square, complex), the simulation res

ults of the optimal tracking problem are examined for the m

agnetic levitation ball system. 

4.1  First case: The fixed trajectories (y(z) = {|}~z�}z) 
In this case, the purpose is that the magnetic levitation 

ball tracks the fixed trajectories. Figure (3) shows the fixed 
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trajectories at 6, 8 and 10 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.The trajectories of the magnetic levitation ball for y(z) = {|}~z�}z 
4.2 Second Case: The sinusoidal trajectories(y(z) =~�}�~|����) 

In this case, the purpose is that the magnetic levitation 

ball track sinusoidal trajectories. Figure (4) shows these 

trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The trajectories of the magnetic levitation ball for y(z) = ~�}�~|���� 
 

4.3 Third case: The square pulse trajectories, (y(z) =~���y�  ���~�) 
In this case, the purpose is that the magnetic levitation 

ball tracks square pulse trajectories. Figure (5) shows these 

trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5The trajectories of the magnetic levitation ball for  y(z) = ~���y�  ���~� 

4.4 Fourth case: The complex trajectories 

In this case, the purpose is that the magnetic levitation 

ball track the complicated trajectories. Figure 6 shows these 

trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6The trajectory of the magnetic levitation ball 

 

 

5. Conclusion 

In this paper, a nonlinear optimal tracker is proposed 

using the SDRE technique to track the magnetic levitation 

ball. In the SDRE technique, the nonlinear equations were 

linearized using the SDC method. Then, an optimal control 

law was extracted to minimize the tracking energy. In the 



Optimization of Energy for Tracking of the Magnetic Levitation Ball Using the SDRE Technique 

 

84

end, for four different trajectories, the simulation results 

were examined for the magnetic levitation ball system. It 

has been shown that the magnetic levitation ball tracks the 

desired trajectories appropriately. 
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