Kinetic and life span study of 5-bromo-2-(((1-hydroxybutan-2-yl)imino)methyl)phenol and 2-((2-((2-hydroxybenzylidene)amino)ethyl)amino)phenol as corrosion inhibitors, using new fast Fourier transform electrochemical techniques
Subject Areas :Mohsen Markazi 1 , Javad Shabani shayeh 2 * , Behnam Rasekh 3
1 - دانشجوی کارشناسی ارشد، مرکز تحقیقات پروتئین، دانشگاه شهید بهشتی، تهران، ایران
2 - Assistant Prof. of Protein Research Center, University of Shahid Beheshti, Tehran Iran
3 - Assistant Prof. of Research Institute of Petroleum Industry, Tehran, Iran
Keywords: Corrosion, Steel, Cyclic voltammetry, Corrosion inhibitors, Electrochemist,
Abstract :
Metal corrosion represents a significant cost to the industry. Detection and prevention are possible by use of various methods including electrochemical technics and corrosion inhibitors. In the present study, the performance of two types of inhibitors, 5-bromo-2-(((1-hydroxybutan-2-yl)imino)methyl)phenol (C11H14BrNO2) and 2-((2-((2-hydroxybenzylidene)amino)ethyl)amino)phenol C15H16N2O2, was investigated in reducing corrosion rate of A106 Gr.b alloy steel used in oil pipelines in corrosive medium of 1M sulfuric acid. The comparison between these two inhibitors and the role of nitrogen in their performance and their life span were investigated by cyclic voltammetric electrochemical technique and fast Fourier transform method for data processing. It was found that the C11H14BrNO2 inhibitor by having a slower kinetics in the decomposition process can stand longer and was more effective than the other corrosion inhibitor. This C11H14BrNO2 inhibitor also has a much better performance in preventing carbon corrosion, despite having a lower nitrogen element in the structure because of its favorable spatial structure and better placement of “N” on the corroded metal surface.
[1] Kruger, J. "Uhlig's Corrosion Handbook 3", Wiley, USA, 2011.
[2] Chen, Z.; Bobaru, F.; Journal of the Mechanics and Physics of Solids 78, 352-81, 2015.
[3] Garcia-Arriaga, V.; Alvarez-Ramirez, J.; Amaya, M.; Sosa, E.; Corrosion Science 52(7), 2268-2279, 2010.
[4] Videla, H.A.; Herrera, L.K.; International Microbiology 8(3), 169-180, 2005.
[5] Finšgar, M.; Jackson, J.; Journal of laboratory automation 21(5), 632-641, 2016.
[6] Chang, Y.J.; Chang, Y.T.; Hung, C.H.; Lee, J.W.; Liao, H.M.; Chou, H.L.; International Biodeterioration & Biodegradation. 95, 93-101, 2014.
[7] Christodoulou, C.; Glass, G.; Webb, J.; Austin, S.; Goodier, C.; Corrosion Science 52(8), 2671-2679, 2010.
[8] Li, X.; Xu, L.; Liu, Y.;Liao, T.; Li, M.; Cui, X.; Journal of Chinese Society for Corrosion and protection. 36(4), 306-312, 2016.
[9] Mizutani, Y.; Kim, S.J.; Ichino, R.; Okido, M.; Surface and Coatings Technology 169, 143-146, 2003.
[10] Ollik, K.; Rybarczyk, M.; Karczewski, J.; Lieder, M.; Applied Surface Science 499,143914, 2020.
[11] AlAbbas, F.M.; Bhola, R.; Spear, J.R.; Olson, D.L.; Mishra, B.; Int. J. Electrochem. Sci. 8, 859-871, 2013.
[12] Salehifar, N.; Shabani Shayeh, J.; Ranaei Siadat, S.O.; Niknam, K.; Ehsani, A.; Kazemi Movahhed, S.; RSC Advances 5(116), 96130-96137, 2015.
[13] Shayeh, J.S.; Norouzi, P.; Ganjali, M.R.; Wojdyla, M.; Fic, K.; Frackowiak, E.; RSC Advances. 5(102), 84076-84083, 2015.
[14] Shayeh, J.S.; Norouzi, P.; Ganjali, M.R.; RSC Advances 5(26), 20446-20452, 2015.
[15] Orazem, M.E.; Tribollet, B.; Electrochemical Society Interface 18, 3, 2019.
[16] Fischer, D.A.; Vargas, I.T.; Pizarro, G.E.; Armijo, F.; Walczak, M.; Electrochimica Acta. 313, 457-467, 2019.
[17] Amin, M.A.; Khaled, K.; Fadl-Allah, S.A.; Corrosion Science 52(1), 140-151, 2010.
[18] McCafferty, E.; Corrosion Science 47(12), 3202-3215, 2005.
_||_
[1] Kruger, J. "Uhlig's Corrosion Handbook 3", Wiley, USA, 2011.
[2] Chen, Z.; Bobaru, F.; Journal of the Mechanics and Physics of Solids 78, 352-81, 2015.
[3] Garcia-Arriaga, V.; Alvarez-Ramirez, J.; Amaya, M.; Sosa, E.; Corrosion Science 52(7), 2268-2279, 2010.
[4] Videla, H.A.; Herrera, L.K.; International Microbiology 8(3), 169-180, 2005.
[5] Finšgar, M.; Jackson, J.; Journal of laboratory automation 21(5), 632-641, 2016.
[6] Chang, Y.J.; Chang, Y.T.; Hung, C.H.; Lee, J.W.; Liao, H.M.; Chou, H.L.; International Biodeterioration & Biodegradation. 95, 93-101, 2014.
[7] Christodoulou, C.; Glass, G.; Webb, J.; Austin, S.; Goodier, C.; Corrosion Science 52(8), 2671-2679, 2010.
[8] Li, X.; Xu, L.; Liu, Y.;Liao, T.; Li, M.; Cui, X.; Journal of Chinese Society for Corrosion and protection. 36(4), 306-312, 2016.
[9] Mizutani, Y.; Kim, S.J.; Ichino, R.; Okido, M.; Surface and Coatings Technology 169, 143-146, 2003.
[10] Ollik, K.; Rybarczyk, M.; Karczewski, J.; Lieder, M.; Applied Surface Science 499,143914, 2020.
[11] AlAbbas, F.M.; Bhola, R.; Spear, J.R.; Olson, D.L.; Mishra, B.; Int. J. Electrochem. Sci. 8, 859-871, 2013.
[12] Salehifar, N.; Shabani Shayeh, J.; Ranaei Siadat, S.O.; Niknam, K.; Ehsani, A.; Kazemi Movahhed, S.; RSC Advances 5(116), 96130-96137, 2015.
[13] Shayeh, J.S.; Norouzi, P.; Ganjali, M.R.; Wojdyla, M.; Fic, K.; Frackowiak, E.; RSC Advances. 5(102), 84076-84083, 2015.
[14] Shayeh, J.S.; Norouzi, P.; Ganjali, M.R.; RSC Advances 5(26), 20446-20452, 2015.
[15] Orazem, M.E.; Tribollet, B.; Electrochemical Society Interface 18, 3, 2019.
[16] Fischer, D.A.; Vargas, I.T.; Pizarro, G.E.; Armijo, F.; Walczak, M.; Electrochimica Acta. 313, 457-467, 2019.
[17] Amin, M.A.; Khaled, K.; Fadl-Allah, S.A.; Corrosion Science 52(1), 140-151, 2010.
[18] McCafferty, E.; Corrosion Science 47(12), 3202-3215, 2005.