Synthesis, characterization and study of Pt/A type-HMS micro/mesoporous catalysts in the normal heptane reforming process
Subject Areas :
1 - Assistant Prof. in Department of Chemistry, Faculty of Basic Sciences, Kosar University of Bojnord, North Khorasan, Iran
Keywords: zeolite, Selectivity, Reforming, Micro/Mesoporous Composites, Isomers,
Abstract :
In present work, the gas phase reforming of normal heptane was used to study the catalytic activity of micro/mesoporous composites. The influence of the structures of these catalysts on the normal heptane conversion and the selectivity to various products including multi and mono branched isomers and cracking products was studied. Various characterization techniques, i.e., X-ray diffraction (XRD), X-ray florescence (XRF), Fourier transform infrared (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), thermogravimetry and differential thermal analyzer (TGA/DTA), and nitrogen adsorption-desorption measurements were used for characterization of the catalysts. The catalytic activity and stability in normal heptane reforming for platinated composite materials consisting of HMS mesopore section (hexagonal mesoporous silica) and microspore section of series A zeolites including 3A, 4A, and 5A, were very close to each other. However, the results show that the selectivity toward the formation of isomers is remarkably high for Pt/4A-HMS composite catalyst. The results show that the effective parameter on catalytic performance is the aluminum amount (or Si/Al ratio) in the structure of the prepared catalysts.
[1] Peyrovi, M.H.; Parsafard, N.; Sajedi, A.; J. Sci., Islamic Repub. Iran. 31(1), 25-31, 2020.
[2] Peyrovi, M.H.; Parsafard, N.; Peyrovi, P.; Ind. Eng. Chem. Res. 53(37), 14253-14262, 2014.
[3] Gabruś, E.; Nastaj, J.; Tabero, P.; Aleksandrzak, T.; Chem. Eng. J. 259, 232-242, 2015.
[4] Barkat, M.; Nibou, D.; Amokrane, S.; Chegrouche, S.; Mellah, A.; C.R. Chim. 18(3), 261-269, 2015.
[5] Wu, Y.; Li, C.; Bai, J.; Wang, J.; Results Phys. 7, 1616-1622, 2017.
[6] Hu, X.; Bai, J.; Hong, H.; Li, C.; Microporous Mesoporous Mater. 228, 224-230, 2016.
[7] Volli, V.; Purkait, M.K.; J. Hazard. Mater. 297, 101-111, 2015.
[8] Parsafard, N.; Peyrovi, M.H.; Rashidzadeh, M.; Microporous Mesoporous Mater. 200, 190-198, 2014.
[9] Parsafard, N.; Peyrovi, M.H.; Parsafard, Na.; Chin. Chem. Let. 28(3), 546-552, 2017.
[10] Parsafard, N.; Peyrovi, M.H.; Parsafard, Ni.; React. Kinet. Mech. Catal.; 120(1), 231-246, 2017.
[11] Parsafard, N.; Asil, A.G.; Mirzaei, Sh.; RSC Adv. 10, 26034-26051, 2020.
[12] Reed, T.B.; Breck, D.W.; J. Am. Chem. Soc. 78(23), 5972-5977, 1956.
[13] Wang, W.; Feng, Q.; Liu, K.; Zhang, G.; Liu, J.; Huang, Y.; Solid State Sci. 39, 52-58, 2015.
[14] Çıçek, E.; Dede, B.; Acta Phys. Pol., A 4(125), 872-874, 2014.
[15] Lopez, T.; Villa, M.; Gomez, R.; J. Phys. Chem. 95(4), 1690-1693, 1991.
[16] Parsafard, N.; Peyrovi, M.H.; Jarayedi, M.; Energy Fuels. 31(6), 6389-6396, 2017.
_||_[1] Peyrovi, M.H.; Parsafard, N.; Sajedi, A.; J. Sci., Islamic Repub. Iran. 31(1), 25-31, 2020.
[2] Peyrovi, M.H.; Parsafard, N.; Peyrovi, P.; Ind. Eng. Chem. Res. 53(37), 14253-14262, 2014.
[3] Gabruś, E.; Nastaj, J.; Tabero, P.; Aleksandrzak, T.; Chem. Eng. J. 259, 232-242, 2015.
[4] Barkat, M.; Nibou, D.; Amokrane, S.; Chegrouche, S.; Mellah, A.; C.R. Chim. 18(3), 261-269, 2015.
[5] Wu, Y.; Li, C.; Bai, J.; Wang, J.; Results Phys. 7, 1616-1622, 2017.
[6] Hu, X.; Bai, J.; Hong, H.; Li, C.; Microporous Mesoporous Mater. 228, 224-230, 2016.
[7] Volli, V.; Purkait, M.K.; J. Hazard. Mater. 297, 101-111, 2015.
[8] Parsafard, N.; Peyrovi, M.H.; Rashidzadeh, M.; Microporous Mesoporous Mater. 200, 190-198, 2014.
[9] Parsafard, N.; Peyrovi, M.H.; Parsafard, Na.; Chin. Chem. Let. 28(3), 546-552, 2017.
[10] Parsafard, N.; Peyrovi, M.H.; Parsafard, Ni.; React. Kinet. Mech. Catal.; 120(1), 231-246, 2017.
[11] Parsafard, N.; Asil, A.G.; Mirzaei, Sh.; RSC Adv. 10, 26034-26051, 2020.
[12] Reed, T.B.; Breck, D.W.; J. Am. Chem. Soc. 78(23), 5972-5977, 1956.
[13] Wang, W.; Feng, Q.; Liu, K.; Zhang, G.; Liu, J.; Huang, Y.; Solid State Sci. 39, 52-58, 2015.
[14] Çıçek, E.; Dede, B.; Acta Phys. Pol., A 4(125), 872-874, 2014.
[15] Lopez, T.; Villa, M.; Gomez, R.; J. Phys. Chem. 95(4), 1690-1693, 1991.
[16] Parsafard, N.; Peyrovi, M.H.; Jarayedi, M.; Energy Fuels. 31(6), 6389-6396, 2017.