Synthesis and characterization of conductive hydrogel nanocomposite for controlled drug delivery of cis-platin
Subject Areas :حسن فتحی نژاد جیرندهی 1 , مروارید نباتی احمدی 2 , معصومه مسکین فام 3
1 - استادیار شیمی آلی، گروه شیمی، واحد فراهان، دانشگاه آزاد اسلامی، فراهان، ایران
2 - کارشناسی ارشد مهندسی شیمی، گروه شیمی، واحد فراهان، دانشگاه آزاد اسلامی، فراهان، ایران
3 - استادیار شیمی معدنی، گروه شیمی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
Keywords: Carbon nanotubes, Guar, Drug release, Conductivity, Hydrogel nanocomposite,
Abstract :
The present work is including synthesis and characterization of conductivity of a super-absorbent conductive hydrogelnanocomposte and its controlled drug release. For this purpose, superabsorbent conductive hydrogel by Guar gum was synthesized based on grafting copolymerization of acrylic acid monomer and proximity of some carbon nanotubes; in addition, polymerization reaction was done in aqueous phase )distilled water( and in the presence of ammonium persulfate as initiator and Methylene bisacrylamide as cross-linked. The results were assessed by FT-IR, cyclic Voltammetry and Scanning Electron microscope. However, the effect of carbonnanotube’s amount on nanocomposite was characterized by increasing this amount, the gel content, equilibrium swelling in distilled water, pH sensitivity, and conductivity increases. In the second stage, cisplatin drug was loaded in hydrogelnao composite and the percentage of drug release in phosphate buffer solution )PBS( was measured by appropriate electrical stimulation. The results show that the synthesized hydrogel is reasonable option for controlled drug release
[1] Li, H.; Yu, H.; Zhu, C.; Hu, J.; Du, M.; Zhang, F.; Yang, D.; RSC Advances 16, 1-30, 2016.
[2] Aryal, S.; Hu, C.J.; Zhang, L.; Acs Nano 4, 251-258, 2010.
[3] Duan, X.; He, C.; Kron, S.J.; Lin, W.; Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 8(5), 776-791, 2016.
[4] Wagstaff, A.J.; Brown, S.D.; Holden, M.R.; Craig, G.E.; Plumb, J.A.;
Brown,R.E.; Schreiter, N.; Chrzanowski, W.; Wheate, N.J.; Inorganica Chimica Acta 393, 328–333, 2012.
[5] Gil, M.S.; Thambi, T.; Phan, V.H.G.; Kim, S.H.; Lee, D.S.; Journal of Materials Chemistry B 34, 1-39, 2017.
[6] Abdel-Bar, H.M.; Osman, R.; Abdel-Reheem, A.Y.; Mortada, N.; Awad, G.A.S.; Biomacromolecules 17 (2), 407–414, 2016.
[7] Guiseppi-Elie, A.; Wilson, A.M.; Sujdak, A.R.; Synthetic Metals 43, 608, 1997.
[8] Jia,W.; Tchoudakov, R.; Segal, E.; Narkis, M.; Siegmann, A.; Reactive and Functional Polymers 55, 1239–1244, 2008.
[9] Li, M.; Kim, H.; Journal of Applied Polymer Science 118, 2475–2481, 2010
[10] Chien-Chi, L.; Andrew, T.M.; Advanced Drug Delivery Reviews 58, 1379-1408, 2011.
[11] Mudgil, D.; Barak, S.; Khatkar, B.S.; Journal of Food Science and Technology 51(3), 409-18, 2014.
[12] Abdel-Halim, E.S.; Al-Deyab, S.S.; International Journal of Biological Macromolecules 69,456-463, 2014.
[13] Kulkarni, R.V.J.; Journal of Bioactive and Compatible Polymers 24, 368-384, 2009.
[14] Jianming, L.; Qunwei, T.; Jihuai, W.; Sancun, H.; Journal of Polymer Research 16, 143-150, 2009.
[15] Hall, M.D.; Shukla, S.K.; Bhanu, S.; Kankane, S.; Progress in Polymer Science 23, 1088-1118, 2012.
[16] Davis, K.A.; Anseth, K.S.; Critical Reviews in Therapeutic Drug Carrier Systems 19, 385-423, 2011.