Preparation and characterization of water-based biodegradable polyurethanes dispersion and investigating the effects of polyethylene glycol on the properties of biodegradability
Subject Areas :Behrooz Ranjbarfar 1 , Saeed Taghvaei Ganjali 2 , Mir Mohammad Alavi Nikje 3 * , Shahram Moradi 4
1 - Ph.D student in Faculty of Chemistry, Islamic Azad University North Tehran Branch, Tehran, Iran
2 - Professor of Organic Chemistry, Faculty of Chemistry, Islamic Azad University North Tehran Branch, Hakimiyeh, Tehran, Iran.
3 - Professor of Organic Chemistry, Department of chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
4 - Professor of Organic Chemistry, Faculty of Chemistry, Islamic Azad University North Tehran Branch, Hakimiyeh, Tehran, Iran
Keywords: Renewable, Dispersion, Biodegradable, Water-based polyurethane,
Abstract :
Preparation, characterization, and investigation of the biodegradability behavior of the new generation of biodegradable water-based polyurethanes on the developing of environmentally friendly materials have been studied in this research. This series of biodegradable polyurethanes were made based on polyols from renewable sources such as castor oil, with polyethylene glycol, using suitable diisocyanate combinations. In this study, in particular, the effects of polyethylene glycol on biodegradability and the properties of these polymers were investigated. Synthesized polymers were characterized using the 1HNMR and Fourier transforms infrared (FTIR) spectroscopy. Particle size measurements were performed using dynamic light scattering (DLS). The biodegradability of prepared PUDs was assessed and confirmed using water uptake, hydrolytic and enzymatic degradation in phosphate buffer saline (PBS) by using lipase enzyme and by the evaluation of contact angle and atomic force microscopy images. The results of the investigation showed that with the addition of natural and degradable components in the polymer backbone and adjusting the hydrophilic properties of soft segments, useful polyurethanes with desirable degradability properties could be obtained.
[1] Subiao, Z.; Hongtao, L.V.; Han, Z.; Bing, W.; Yingmei, X.; J. Appl. Polym. Sci. 101, 597-602, 2006.
[2] Dang, X.; Yuan, H.C.; Shan, Z.; J. Clean. Prod. 188, 416-424, 2018.
[3] Thangavel, G.; Mohanty, S.; Nayak, S.K.; J. Mater. Sci. 49, 8016-8030, 2014.
[4] Si, H.; Liu, H. Shang, S.; Song, J.; Liao, S.; Wang, D.; Song, Z.; Prog. Org. Coat. 90, 309–316, 2016.
[5] Liu. N.; Zhao, Y.; Kang, M.; Wang, J.; Wang, X.; Feng, Y.; Yin, N.; Li, Q.; Prog. Org. Coat. 82, 46–56, 2015.
[6] Fan, W.; Du, W.; Li, Z.; Dan, N.; Huang, J.; Prog. Org. Coat. 86, 125–133, 2015.
[7] Seyed Mohaghegh, S.M.; Barikani, M.; Entezami, A.A.; Iran. Polym. J. 14, 163-168, 2005.
[8] Liu, H.L.; Dai, S.A .; Fu, K.Y.; Hsu, S.H .; Int. J. Nanomed. 5, 1017–1028, 2010.
[9] Noreen, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Prog. Org. Coat. 91, 25-32, 2016.
[10] Liu, K.; Miao, S.; Su, Z.; Sun, L.; Ma, G.; Zhang, S.; Eur. J. Lipid. Sci. Technol. 118, 1512- 1520, 2016.
[11] Hormaiztegui, M.E.V.; Aranguren, M.I.; Mucci, V.L.; Eur. Polym. J. 102, 151-160, 2018.
[12] Howarth, G.A.; J. Surf. Coat. Intl. B: Coatings Trans. 86,111-118, 2003.
[13] Negim, S.M.; Bahruddin, S.; Mahyuddin, R.; Idiris, M.S.; J. Appl. Polym. Sci. 121, 8-13, 2011.
[14] Chien‐Yu, L., Wen‐Yen, C., Trong, M.D.; J. Polym. Sci, part A. polym. Chem. 43, 4870-4881, 2005.
[15] Ajaya, K.N.; Douglas, A.W.; Samy, A.M.; Joshua, U.O.; J. Appl. Polym. Sci. 98, 2514-2520, 2005.
[16] Ajaya, K.N.; Douglas A.W.; Polymer 47(6), 1805-1811, 2006.
[17] Jong, Y.J.; Young, K.J.; In, W.C.; Jung, H.K.; Coll.Surf. A: Physicochemical and Engineering Aspects 196(2-3), 135-143, 2002.
[18] Yu, L. (Ed.), "Biodegradable Polymer Blends and Composites from Renewable Resources", John Wiley & Sons, Hoboken NJ, 2009.
[19] Lu, Y.; Larock, R.C.; Chem. Sus. Chem. 2(2), 136-47, 2009.
[20] Halim, H.; "Handbook of Polymer Degradation", CRC Press, Boca Raton, 2000.
[21] Satyabrat, G.; Niranjan, K.; ACS. Sustainable. Chem. Eng. 2(12), 2730–2738, 2014.
[22] Lee, J.Y.; Shim, M.J.; Kim, S.W.; J. Appl. Polym. Sci. 86, 3461-3465, 2002.
[23] Saalah, S., Abdullah, L.C.; Aung, M.M.; Salleh, M.Z., Radiah, D.; Ind. Crops. Prod. 64, 194-200, 2015.
[24] Liang, H.; Feng, Y.; Lu, J.; Liu, L.X.; Yang, Z.; Luo, Y.; Ind. Crops. Prod. 122, 448-455, 2018.
[25] Subrata, M.; Darren, M.; Polym. Degrad. Stab. 97, 1553-1561, 2012.
[26] Konstanze, S.; Katharina, E.; Patrick, S.; Andreas, R.; J. Polym. Chem. 56, 2214-2224, 2018.
[27] Haiyan, L.; Yechang, F.; Jingyi, L.; Lingxiao, L.; Ind. Crops. Prod. 122, 448-455, 2018.
[28] Stefan, O.; Polym. Degrad. Stab. 95, 2396-2404, 2010.
[29] Petrovic, Z.S.; Xu, Y.; Milic´, J; Glenn, G.; J. Polym. Environ. 18, 94 -97, 2010.
_||_[1] Subiao, Z.; Hongtao, L.V.; Han, Z.; Bing, W.; Yingmei, X.; J. Appl. Polym. Sci. 101, 597-602, 2006.
[2] Dang, X.; Yuan, H.C.; Shan, Z.; J. Clean. Prod. 188, 416-424, 2018.
[3] Thangavel, G.; Mohanty, S.; Nayak, S.K.; J. Mater. Sci. 49, 8016-8030, 2014.
[4] Si, H.; Liu, H. Shang, S.; Song, J.; Liao, S.; Wang, D.; Song, Z.; Prog. Org. Coat. 90, 309–316, 2016.
[5] Liu. N.; Zhao, Y.; Kang, M.; Wang, J.; Wang, X.; Feng, Y.; Yin, N.; Li, Q.; Prog. Org. Coat. 82, 46–56, 2015.
[6] Fan, W.; Du, W.; Li, Z.; Dan, N.; Huang, J.; Prog. Org. Coat. 86, 125–133, 2015.
[7] Seyed Mohaghegh, S.M.; Barikani, M.; Entezami, A.A.; Iran. Polym. J. 14, 163-168, 2005.
[8] Liu, H.L.; Dai, S.A .; Fu, K.Y.; Hsu, S.H .; Int. J. Nanomed. 5, 1017–1028, 2010.
[9] Noreen, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Prog. Org. Coat. 91, 25-32, 2016.
[10] Liu, K.; Miao, S.; Su, Z.; Sun, L.; Ma, G.; Zhang, S.; Eur. J. Lipid. Sci. Technol. 118, 1512- 1520, 2016.
[11] Hormaiztegui, M.E.V.; Aranguren, M.I.; Mucci, V.L.; Eur. Polym. J. 102, 151-160, 2018.
[12] Howarth, G.A.; J. Surf. Coat. Intl. B: Coatings Trans. 86,111-118, 2003.
[13] Negim, S.M.; Bahruddin, S.; Mahyuddin, R.; Idiris, M.S.; J. Appl. Polym. Sci. 121, 8-13, 2011.
[14] Chien‐Yu, L., Wen‐Yen, C., Trong, M.D.; J. Polym. Sci, part A. polym. Chem. 43, 4870-4881, 2005.
[15] Ajaya, K.N.; Douglas, A.W.; Samy, A.M.; Joshua, U.O.; J. Appl. Polym. Sci. 98, 2514-2520, 2005.
[16] Ajaya, K.N.; Douglas A.W.; Polymer 47(6), 1805-1811, 2006.
[17] Jong, Y.J.; Young, K.J.; In, W.C.; Jung, H.K.; Coll.Surf. A: Physicochemical and Engineering Aspects 196(2-3), 135-143, 2002.
[18] Yu, L. (Ed.), "Biodegradable Polymer Blends and Composites from Renewable Resources", John Wiley & Sons, Hoboken NJ, 2009.
[19] Lu, Y.; Larock, R.C.; Chem. Sus. Chem. 2(2), 136-47, 2009.
[20] Halim, H.; "Handbook of Polymer Degradation", CRC Press, Boca Raton, 2000.
[21] Satyabrat, G.; Niranjan, K.; ACS. Sustainable. Chem. Eng. 2(12), 2730–2738, 2014.
[22] Lee, J.Y.; Shim, M.J.; Kim, S.W.; J. Appl. Polym. Sci. 86, 3461-3465, 2002.
[23] Saalah, S., Abdullah, L.C.; Aung, M.M.; Salleh, M.Z., Radiah, D.; Ind. Crops. Prod. 64, 194-200, 2015.
[24] Liang, H.; Feng, Y.; Lu, J.; Liu, L.X.; Yang, Z.; Luo, Y.; Ind. Crops. Prod. 122, 448-455, 2018.
[25] Subrata, M.; Darren, M.; Polym. Degrad. Stab. 97, 1553-1561, 2012.
[26] Konstanze, S.; Katharina, E.; Patrick, S.; Andreas, R.; J. Polym. Chem. 56, 2214-2224, 2018.
[27] Haiyan, L.; Yechang, F.; Jingyi, L.; Lingxiao, L.; Ind. Crops. Prod. 122, 448-455, 2018.
[28] Stefan, O.; Polym. Degrad. Stab. 95, 2396-2404, 2010.
[29] Petrovic, Z.S.; Xu, Y.; Milic´, J; Glenn, G.; J. Polym. Environ. 18, 94 -97, 2010.