Preparation of nanocomposites of graphene-metal-organic framework based on bismuth by laser ablation in liquid and investigation of optical properties and antibacterial activities of them
Subject Areas :Negar Motakef Kazemi 1 , Fereydoon Ataei 2 , Davoud Dorranian 3
1 - Associate Prof. of Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2 - Ph.D of Laser Lab, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Professor of Laser Lab, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Keywords: nanocomposite, Graphene, Metal-organic framework, Laser Ablation,
Abstract :
Pulsed laser ablation (PLA) was used for the first time to synthesis graphene nanocomposites and bismuth-based metal-organic framework (Bi-MOF) in liquid environment. In this work, Bi-MOF nanostructures were synthesized by laser ablation of bismuth target as a connector center, benzene-1,3,5-tricarboxylic acid (BTC) as a bridging ligand, and methanol (MeOH) and dimethylformamide (DMF) as a solvent. In the first step, three samples of Bi-MOF nanostructures were produced in three different ligand concentrations. Then MOF-graphene nanocomposites were produced by Nd:YAG pulsed laser ablation of graphite target in the three obtained Bi-MOF nanostructures samples. The nanocomposites were characterized by X-ray diffraction (XRD) to study the crystal structure, Fourier transform infrared (FTIR) spectroscopy to determine functional groups, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) to present the morphology, ultraviolet-visible (UV-Vis) spectroscopy to evaluate the band gap of the samples. The antibacterial activity of the samples was evaluated against Escherichia coli (E. coli) as Gram-negative bacterium and Staphylococcus aureus (S. aureus) as Gram-positive bacterium. Based on the results, pulsed laser ablation is an environmentally friendly method that is able to produce MOF-graphene nanocomposites in a short period of time, and these nanostructures can be widely used, including in neutralizing harmful bacteria.
[1] Yan Z, Chrisey DB. Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. 2012;13(3):204-223. doi: 10.1016/j.jphotochemrev.2012.04.004
[2] Zhang D, Li Z, Sugioka K. Laser ablation in liquids for nanomaterial synthesis: Diversities of targets and liquids. Journal of Physics: Photonics. 2021;3(4):042002. doi: 10.1088/2515-7647/ac0bfd
[3] Kitagawa S, Matsud R. Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 2007;251:2490-2509. doi: 10.1016/j.ccr.2007.07.009
[4] Ferey G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008;37:191–214. doi: 10.1039/B618320B
[5] Shyngys M, Ren J, Liang X, Miao J, Blocki A, Beyer S. Metal-organic framework (MOF)-based biomaterials for tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 2021;9:1-9. doi: 10.3389/fbioe.2021.603608.
[6] Miri B, Motakef-Kazemi N, Shojaosadati SA, Morsali A. Application of a nanoporous metal organic framework based on iron carboxylate as drug delivery system. Iran J Pharm Res. 2018;17(4):1164-1171.
[7] Hu Z, Deibert BJ, Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43:5815–5840. doi: 10.1039/C4CS00010B
[8] Vardali SC, Manousi N, Barczak M, Giannakoudakis DA. Novel approaches utilizing metal-organic framework composites for the extraction of organic compounds and metal traces from fish and seafood. Molecules. 2020;25:513. doi: 10.3390/molecules25030513
[9] Jensen S, Tan K, Lustig W, Kilin D, Li J, Chabal YJ, Thonhauser T. Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. J. Mater. Chem. C. 2019;7:2625-2632. doi: 10.1039/C8TC06281A
[10] Sun H, Cong S, Zheng Z, Wang Z, Chen Z, Zhao Z. Metal–organic frameworks as surface enhanced raman scattering substrates with high tailorability. J. Am. Chem. Soc. 2019;141:870−878. doi: 10.1021/jacs.8b09414
[11] Ghourchian F, Motakef-Kazemi N, Ghasemi E, Ziyadi H. Zn-based MOF-chitosan-Fe3O4 nanocomposite as an effective nano-catalyst for azo dye degradation. J Environ Chem Eng. 2021;9(6):106388. doi: 10.1016/j.jece.2021.106388
[12] Stavila V, Talin AA, Allendorf MD. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014;43:5994-6010. doi: 10.1039/C4CS00096J
[13] Mehmandoust MR, Motakef-Kazemi N, Ashouri F. Nitrate adsorption from aqueous solution by metal–organic framework MOF-5. Iran. J. Sci. Technol. A. 2019;43(2):443–449. doi: 10.1007/s40995-017-0423-6
[14] Musyoka NM, Ren J, Langmi HW, North BC, Mathe M, Bessarabov D. Synthesis of rGO/Zr-MOF composite for hydrogen storage application. J Alloy Compd. 2017;724:450-455. doi: 10.1016/j.jallcom.2017.07.040
[15] Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev. 2012;112:869–932. doi: 10.1021/cr200190s
[16] Motakef-Kazemi N, Rashidian M, Taghizadeh Dabbagh S, Yaqoubi M. Synthesis and characterization of bismuth oxide nanoparticle by thermal decomposition of bismuth-based MOF and evaluation of its nanocomposite. IJCCE. 2020;40(1):11-19. doi: 10.30492/ijcce.2019.37263
[17] Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov. 2016;21(6):1009-1018. doi: 10.1016/j.drudis.2016.04.009
[18] Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012;112(2):933-969. doi: 10.1021/cr200304e
[19] Motakef-Kazemi N, Ataei F, Dorranian D. Synthesis and evaluation of copper–imidazole MOF nanostructures and its graphene nanocomposites by pulsed laser ablation method in liquid. Optical and Quantum Electronics. 2023;55:921. doi: 10.1007/s11082-023-04775-z
[20] Ataei F, Dorranian D, Motakef-Kazemi N. Synthesis of MOF-5 nanostructures by laser ablation method in liquid and evaluation of its properties. J. Mater. Sci.: Mater. Electron. 2021;32:3819-3833. doi: 10.1007/s10854-020-05126-4
[21] Ataei F, Dorranian D, Motakef-Kazemi N. Bismuth-based metal–organic framework prepared by pulsed laser ablation method in liquid. JTAP. 2020;14:1-8. doi: 10.1007/s40094-020-00397-y
[22] Campello SL, Gentil G, Júnior SA, de Azevedo WM. Laser ablation: A new technique for the preparation of metal-organic frameworks Cu3(BTC)2(H2O)3. Mater. 2015;148:200-203. doi: 10.1016/j.matlet.2015.01.159
[23] Maria Menezes Madeiro da Costa O. de Azevedo WM. Highly luminescent metal organic framework Eu(TMA)(H2O)4 materials prepared by laser ablation technique in liquid. J Lumin. 2016;170:648-653. doi: 10.1016/j.jlumin.2015.09.004
[24] Ribeiro EL, Davari SA, Hu S, Mukherjee D, Khomami B. Laser-induced synthesis of ZIF-67: A facile approach for the fabrication of crystalline MOFs with tailored size and geometry. Mater Chem Front. 2019;3:1302-1309. doi: 10.1039/C8QM00671G
[25] Abdi S, Dorranian D. Effect of CTAB concentration on the properties of ZnO nanoparticles produced by laser ablation method in CTAB solution. Opt Laser Technol. 2018;108:372-377. doi: 10.1016/j.optlastec.2018.07.009
[26] Solati E, Dorranian D. Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull Mater Sci. 2016; 39:1677–1684. doi: 10.1007/s12034-016-1315-7
[27] Ebrahim Jasbi N, Solati E, Dorranian D. Role of laser fluence in decoration of graphene nanosheets with TiO2 nanoparticles by pulsed laser ablation method. J. Alloys Compd. 2021;861:157956. doi: 10.1016/j.jallcom.2020.157956
[28] Zhanga K, Xieb A, Sunb M, Jiangc W, Wub F, Dong W. Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater Chem Phys. 2017;199:340-347. doi: 10.1016/j.matchemphys.2017.07.026
[29] Wang Z, Zeng Z, Wang H, Zeng GM, Xu P, Xiao R, Huang D, Chen S, He Y, Zhou C, Cheng M, Qin H. Bismuth-based metal–organic frameworks and their derivatives: Opportunities and challenges. Coord. Chem. Rev. 2021;439:213902. doi: 10.1016/j.ccr.2021.213902
[30] Wang QX, Li G. Bi(iii) MOFs: syntheses, structures and applications. Inorg. Chem. Front. 2021;8:572-589. doi: 10.1039/D0QI01055C
[31] Wang G, Liu Y, Huang B, Qin X, Zhang Z, Dai Y. A novel metal–organic framework based on bismuth and trimesic acid: Synthesis, structure and properties. Dalton Trans. 2015;44:16238. doi: 10.1039/C5DT03111G
[32] Çiplak Z, Yildiz N, Çalimli A. Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fuller. Nanotub. Car N. 2014;3(4):361-370. doi: 10.1080/1536383X.2014.894025
[33] Tuz Johra F, Wook Lee J, Jung WG. Facile and safe graphene preparation on solution based platform. J Ind Eng Chem. 2014;20(5):2883–2887. doi: 10.1016/j.jiec.2013.11.022
[34] Siburian R, Sihotang H, Lumban Raja S, Supeno M, Simanjuntak C. New route to synthesize of graphene nano sheets. Orient. J. Chem. 2018;34(1):182-187. doi: 10.13005/ojc/340120
[35] Ganash EA, Al-Jabarti GA, Altuwirqi RM. he Synthesis of carbon-based banomaterials by pulsed laser ablation in water. Mater Res Express. 2020;7:015002. doi: 10.1088/2053-1591/ab572b
[36] Kaczmarek A, Hoffman J, Morgiel J, Mo´scicki T, Stobinski L, Szymanski Z, Małolepszy A. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine. Materials. 2021;14:729. doi: 10.3390/ma14040729
[37] Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett. 2018;9:6814-6817. doi: 10.1021/acs.jpclett.8b02892
[38] Hajiashrafi S, Motakef-Kazemi N. Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon. 2019;5:e02152. doi: 10.1016/j.heliyon.2019.e02152
_||_[1] Yan Z, Chrisey DB. Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. 2012;13(3):204-223. doi: 10.1016/j.jphotochemrev.2012.04.004
[2] Zhang D, Li Z, Sugioka K. Laser ablation in liquids for nanomaterial synthesis: Diversities of targets and liquids. Journal of Physics: Photonics. 2021;3(4):042002. doi: 10.1088/2515-7647/ac0bfd
[3] Kitagawa S, Matsud R. Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 2007;251:2490-2509. doi: 10.1016/j.ccr.2007.07.009
[4] Ferey G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008;37:191–214. doi: 10.1039/B618320B
[5] Shyngys M, Ren J, Liang X, Miao J, Blocki A, Beyer S. Metal-organic framework (MOF)-based biomaterials for tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 2021;9:1-9. doi: 10.3389/fbioe.2021.603608.
[6] Miri B, Motakef-Kazemi N, Shojaosadati SA, Morsali A. Application of a nanoporous metal organic framework based on iron carboxylate as drug delivery system. Iran J Pharm Res. 2018;17(4):1164-1171.
[7] Hu Z, Deibert BJ, Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43:5815–5840. doi: 10.1039/C4CS00010B
[8] Vardali SC, Manousi N, Barczak M, Giannakoudakis DA. Novel approaches utilizing metal-organic framework composites for the extraction of organic compounds and metal traces from fish and seafood. Molecules. 2020;25:513. doi: 10.3390/molecules25030513
[9] Jensen S, Tan K, Lustig W, Kilin D, Li J, Chabal YJ, Thonhauser T. Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. J. Mater. Chem. C. 2019;7:2625-2632. doi: 10.1039/C8TC06281A
[10] Sun H, Cong S, Zheng Z, Wang Z, Chen Z, Zhao Z. Metal–organic frameworks as surface enhanced raman scattering substrates with high tailorability. J. Am. Chem. Soc. 2019;141:870−878. doi: 10.1021/jacs.8b09414
[11] Ghourchian F, Motakef-Kazemi N, Ghasemi E, Ziyadi H. Zn-based MOF-chitosan-Fe3O4 nanocomposite as an effective nano-catalyst for azo dye degradation. J Environ Chem Eng. 2021;9(6):106388. doi: 10.1016/j.jece.2021.106388
[12] Stavila V, Talin AA, Allendorf MD. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014;43:5994-6010. doi: 10.1039/C4CS00096J
[13] Mehmandoust MR, Motakef-Kazemi N, Ashouri F. Nitrate adsorption from aqueous solution by metal–organic framework MOF-5. Iran. J. Sci. Technol. A. 2019;43(2):443–449. doi: 10.1007/s40995-017-0423-6
[14] Musyoka NM, Ren J, Langmi HW, North BC, Mathe M, Bessarabov D. Synthesis of rGO/Zr-MOF composite for hydrogen storage application. J Alloy Compd. 2017;724:450-455. doi: 10.1016/j.jallcom.2017.07.040
[15] Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev. 2012;112:869–932. doi: 10.1021/cr200190s
[16] Motakef-Kazemi N, Rashidian M, Taghizadeh Dabbagh S, Yaqoubi M. Synthesis and characterization of bismuth oxide nanoparticle by thermal decomposition of bismuth-based MOF and evaluation of its nanocomposite. IJCCE. 2020;40(1):11-19. doi: 10.30492/ijcce.2019.37263
[17] Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov. 2016;21(6):1009-1018. doi: 10.1016/j.drudis.2016.04.009
[18] Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012;112(2):933-969. doi: 10.1021/cr200304e
[19] Motakef-Kazemi N, Ataei F, Dorranian D. Synthesis and evaluation of copper–imidazole MOF nanostructures and its graphene nanocomposites by pulsed laser ablation method in liquid. Optical and Quantum Electronics. 2023;55:921. doi: 10.1007/s11082-023-04775-z
[20] Ataei F, Dorranian D, Motakef-Kazemi N. Synthesis of MOF-5 nanostructures by laser ablation method in liquid and evaluation of its properties. J. Mater. Sci.: Mater. Electron. 2021;32:3819-3833. doi: 10.1007/s10854-020-05126-4
[21] Ataei F, Dorranian D, Motakef-Kazemi N. Bismuth-based metal–organic framework prepared by pulsed laser ablation method in liquid. JTAP. 2020;14:1-8. doi: 10.1007/s40094-020-00397-y
[22] Campello SL, Gentil G, Júnior SA, de Azevedo WM. Laser ablation: A new technique for the preparation of metal-organic frameworks Cu3(BTC)2(H2O)3. Mater. 2015;148:200-203. doi: 10.1016/j.matlet.2015.01.159
[23] Maria Menezes Madeiro da Costa O. de Azevedo WM. Highly luminescent metal organic framework Eu(TMA)(H2O)4 materials prepared by laser ablation technique in liquid. J Lumin. 2016;170:648-653. doi: 10.1016/j.jlumin.2015.09.004
[24] Ribeiro EL, Davari SA, Hu S, Mukherjee D, Khomami B. Laser-induced synthesis of ZIF-67: A facile approach for the fabrication of crystalline MOFs with tailored size and geometry. Mater Chem Front. 2019;3:1302-1309. doi: 10.1039/C8QM00671G
[25] Abdi S, Dorranian D. Effect of CTAB concentration on the properties of ZnO nanoparticles produced by laser ablation method in CTAB solution. Opt Laser Technol. 2018;108:372-377. doi: 10.1016/j.optlastec.2018.07.009
[26] Solati E, Dorranian D. Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull Mater Sci. 2016; 39:1677–1684. doi: 10.1007/s12034-016-1315-7
[27] Ebrahim Jasbi N, Solati E, Dorranian D. Role of laser fluence in decoration of graphene nanosheets with TiO2 nanoparticles by pulsed laser ablation method. J. Alloys Compd. 2021;861:157956. doi: 10.1016/j.jallcom.2020.157956
[28] Zhanga K, Xieb A, Sunb M, Jiangc W, Wub F, Dong W. Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater Chem Phys. 2017;199:340-347. doi: 10.1016/j.matchemphys.2017.07.026
[29] Wang Z, Zeng Z, Wang H, Zeng GM, Xu P, Xiao R, Huang D, Chen S, He Y, Zhou C, Cheng M, Qin H. Bismuth-based metal–organic frameworks and their derivatives: Opportunities and challenges. Coord. Chem. Rev. 2021;439:213902. doi: 10.1016/j.ccr.2021.213902
[30] Wang QX, Li G. Bi(iii) MOFs: syntheses, structures and applications. Inorg. Chem. Front. 2021;8:572-589. doi: 10.1039/D0QI01055C
[31] Wang G, Liu Y, Huang B, Qin X, Zhang Z, Dai Y. A novel metal–organic framework based on bismuth and trimesic acid: Synthesis, structure and properties. Dalton Trans. 2015;44:16238. doi: 10.1039/C5DT03111G
[32] Çiplak Z, Yildiz N, Çalimli A. Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fuller. Nanotub. Car N. 2014;3(4):361-370. doi: 10.1080/1536383X.2014.894025
[33] Tuz Johra F, Wook Lee J, Jung WG. Facile and safe graphene preparation on solution based platform. J Ind Eng Chem. 2014;20(5):2883–2887. doi: 10.1016/j.jiec.2013.11.022
[34] Siburian R, Sihotang H, Lumban Raja S, Supeno M, Simanjuntak C. New route to synthesize of graphene nano sheets. Orient. J. Chem. 2018;34(1):182-187. doi: 10.13005/ojc/340120
[35] Ganash EA, Al-Jabarti GA, Altuwirqi RM. he Synthesis of carbon-based banomaterials by pulsed laser ablation in water. Mater Res Express. 2020;7:015002. doi: 10.1088/2053-1591/ab572b
[36] Kaczmarek A, Hoffman J, Morgiel J, Mo´scicki T, Stobinski L, Szymanski Z, Małolepszy A. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine. Materials. 2021;14:729. doi: 10.3390/ma14040729
[37] Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett. 2018;9:6814-6817. doi: 10.1021/acs.jpclett.8b02892
[38] Hajiashrafi S, Motakef-Kazemi N. Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon. 2019;5:e02152. doi: 10.1016/j.heliyon.2019.e02152