STUDY OF CO HYDROGENATION TO VALUABLE PRODUCTS USING IRON-BASED CATALYST, WITH AND WITHOUT GAMMA-ALUMINA Support PROMOTER
Subject Areas :Neda Choodari Milani 1 , Yahya Zamani 2 * , Sahar Baniyaghoob 3 , Ali Nakhaei Pour 4
1 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Gas Research Division, Research Institute of Petroleum Industry, Tehran, Iran
3 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords: CO hydrogenation, Iron catalyst, Gamma-Alumina Support, Operation condition, Zr promoter, C5+ selectivity,
Abstract :
Promoted and unpromoted iron-based catalysts in the Fischer-Tropsch synthesis were prepared by the impregnation method. The composition of the final iron catalysts, regarding to the atomic ratio is as follow 20%Fe/-Al2O3, 20%Fe/5%Cu/3%Zr/-Al2O3. The catalysts were characterized by X-ray diffraction (XRD), inductively coupled plasma (ICP), field emission scanning electron microscopy (FE-SEM), hydrogen temperature programmed reduction (H2-TPR), and BET techniques. The catalyst activity and product selectivity were studied in a fixed bed reactor under 20 bar of pressure, H2/CO = 1, in the temperature (270, 285, and 300 °C) and GHSV range of (2, 4, and 6 l.h-1.gcat-1). Then, the effect of temperature, GHSV and promoters (Cu and Zr) on the catalyst performance were investigated. Increasing the temperatures and GHSV were change CO conversion and product selectivity. The promoted iron-based catalysts have higher C5+ selectivity than the unpromoted catalyst, while C2-C4 selectivity decreased because of simultaneous use of Cu and Zr for promoting the iron catalyst. The Zr and Cu promoters increased the reduction rate of Fe2O3 by providing H2 dissociation sites. The unpromoted and promoted catalysts were tested, where the promoted catalyst showed desirable performance.
[1] Chen Z, Meng Y, Lu J, Zhou W, Yang Z, Zhou A. The effect of hydrophobically modified iron catalysts with hexadecyltrimethoxysilane on Fischer‐Tropsch synthesis. ChemistrySelect. 2023;8(6):e202202903. doi: org/10.1002/slct.202202903
[2] Saheli S, Reza Rezvani A, Moghaddami A, Dusek M, Samolova E. Production of light olefins and C5+ hydrocarbons in the Fischer‐Tropsch synthesis by using inorganic precursor. ChemistrySelect. 2022;7(29):e202201286. doi: org/10.1002/slct.202201286
[3] Bahar J, Lghazi Y, Youbi B, Himi MA, El Haimer C, Ezaier Y, et al. Electrochemical deposition and characterization of copper-cobalt oxide layers by electrodeposition. Journal of the Indian Chemical Society. 2023;100(2):100914. doi: org/10.1016/j.jics.2023.100914
[4] Claeys M, van Steen E. Basic studies. Studies in surface science and catalysis. 2004;152:601-80. doi:org/10.1016/S0167-2991(04)80465-8
[5] Kababji AH, Kugler EL, Dadyburjor DB. Recent developments in cobalt-and iron-based catalysts for Fischer-Tropsch synthesis. Recent Patents on Catalysis. 2012;1(2):97-106. doi: org/10.2174/2211548X11201020097
[6] Parhizkar J, Habibi MH. Synthesis, characterization and photocatalytic properties of Iron oxide nanoparticles synthesized by sol-gel autocombustion with ultrasonic irradiation. Nanochemistry Research. 2017;2(2):166-71. doi: org/10.22036/NCR.2017.02.002
[7] Guilera J, Díaz-López JA, Berenguer A, Biset-Peiró M, Andreu T. Fischer-Tropsch synthesis: Towards a highly-selective catalyst by lanthanide promotion under relevant CO2 syngas mixtures. Applied Catalysis A: General. 2022;629:118423. doi: org/10.1016/j.apcata.2021.118423
[8] Vannice M. The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: I. The specific activities and product distributions of supported metals. Journal of Catalysis. 1975;37(3):449-61. doi: org/10.1016/0021-9517(75)90181-5
[9] Xiao H, Ming Q, Hong W, Xin Y, Hai-Yun S, Xian-Feng S, et al. Effect of Fe3O4 content on the CO2 selectivity of iron-based catalyst for Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology. 2023;51(2):155-64. doi: org/10.1016/S1872-5813(22)60018-5
[10] Khalighi R, Bahadoran F, Panjeshahi MH, Zamaniyan A, Tahouni N. Effects of nickel aluminate spinel (NiAl2O4) as Catalyst Support and Promoters (Ru, Rh) in Fischer‐Tropsch synthesis. ChemistrySelect. 2020;5(26):7934-40. doi: org/10.1002/slct.202000740
[11] Ma L, Zhang Y, Gao X, Atchimarungsri T, Ma Q, Zhang J, et al. A Hydrophilic supported Fe3O4 catalyst with enhanced light olefins selectivity in the Fischer‐Tropsch synthesis. ChemistrySelect. 2021;6(34):9293-9. doi: org/10.1002/slct.202102614
[12] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General. 1997;161(1-2):59-78. doi: org/10.1016/S0926-860X(97)00186-5
[13] Chou W, Wu P, Luo M, Li W, Li S. Effects of Al, Si, Ti, Zr promoters on catalytic performance of iron-based Fischer–Tropsch synthesis catalysts. Catalysis Letters. 2020;150:1993-2002. doi: org/10.1007/s10562-020-03104-3
[14] Peregudova AS, Barrios AJ, Ordomsky VV, Borisova NE, Khodakov AY. The Fischer–Tropsch reaction in the aqueous phase over rhodium catalysts: A promising route to selective synthesis and separation of oxygenates and hydrocarbons. Chemical Communications. 2020;56(2):277-80. doi: org/10.1039/C9CC09026F
[15] Han Z, Ying W, Zhang H, Ma H, Qian W. Role of SiO2 in different iron-based catalysts for Fischer-Tropsch synthesis to light olefins. Fuel. 2023;338:127257. doi: org/10.1016/j.fuel.2022.127257
[16] Yahyazadeh A, Dalai AK, Ma W, Zhang L. Fischer–Tropsch synthesis for light olefins from syngas: A review of catalyst development. Reactions. 2021;2(3):227-57. doi: org/10.3390/reactions2030015
[17] Graf B, Muhler M. The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer–Tropsch synthesis: A quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study. Physical Chemistry Chemical Physics. 2011;13(9):3701-10. doi: org/10.1039/C0CP01875A
[18] Yang Y, Zhang H, Ma H, Qian W, Sun Q, Ying W. Effect of alkalis (Li, Na, and K) on precipitated iron-based catalysts for high-temperature Fischer-Tropsch synthesis. Fuel. 2022;326:125090. doi: org/10.1016/j.fuel.2022.125090
[19] Zamani Y, Mohajeri A, Bakavoli M, Rahimizadeh M, SEYEDI SM. The Effect of temperature on product distribution over Fe-Cu-K catalyst in Fischer-Tropsch synthesis. 2016;6(1):46-52. doi: org/10.22078/jpst.2016.567
[20] Li H, Li W, Zhuang Z, Liu F, Li L, Lv Y, et al. Effect of reaction temperature and H2/CO ratio on deactivation behavior of precipitated iron Fischer-Tropsch synthesis catalyst. Catalysis Today. 2022;405:277-84. doi: org/10.1016/j.cattod.2022.04.025
[21] Pansanga K, Lohitharn N, Chien AC, Lotero E, Panpranot J, Praserthdam P, et al. Copper-modified alumina as a support for iron Fischer–Tropsch synthesis catalysts. Applied Catalysis A: General. 2007;332(1):130-7. doi; org/10.1016/j.apcata.2007.08.006
[22] Zhang C-H, Yang Y, Teng B-T, Li T-Z, Zheng H-Y, Xiang H-W, et al. Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper. Journal of Catalysis. 2006;237(2):405-15. doi: org/10.1016/j.jcat.2005.11.004
[23] Liu X-L, Zhao W-T, Zhang J, Chen J-G. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology. 2021;49(10):1504-12. doi: org/10.1016/S1872-5813(21)60159-7
[24] Ding M. Syngas Conversion to Lower Olefins via Facet Regulating. Progress in Chemistry. 2017;29(1):5. doi: org/10.1038/nature19786
[25] Liu Y, Chen J-F, Bao J, Zhang Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS catalysis. 2015;5(6):3905-9. doi.org/10.1021/acscatal.5b00492
[26] Qian W, Zhang H, Sun Q, Liu Y, Ying W, Fang D. Effects of Zr and Ni promoters on the activation and deactivation of a precipitated iron-based catalyst for Fischer–Tropsch synthesis. Reaction Kinetics, Mechanisms and Catalysis. 2014;111:293-304. doi: org/10.1007/s11144-013-0648-0
[27] Zhang H-J, Ma H-F, Zhang H-T, Ying W-Y, Fang D-Y. Effect of incorporation manner of Zr promoter on precipitated iron-based catalysts for Fischer-Tropsch synthesis. Journal of Coal Science and Engineering. 2012;18(2):182-7. doi: org/10.1007/s12404-012-0213-x
[28] Qing M, Yang Y, Wu B, Xu J, Zhang C, Gao P, et al. Modification of Fe–SiO2 interaction with zirconia for iron-based Fischer–Tropsch catalysts. Journal of Catalysis. 2011;279(1):111-22. doi: org/10.1016/j.jcat.2011.01.005
[29] Zhang S, Li D, Liu Y, Zhang Y, Wu Q. Zirconium doped precipitated Fe-based catalyst for Fischer–Tropsch synthesis to light olefins at industrially relevant conditions. Catalysis Letters. 2019;149:1486-95. doi: org/10.1007/s10562-019-02775-x
[30] Yang Y, Xiang H-W, Tian L, Wang H, Zhang C-H, Tao Z-C, et al. Structure and Fischer–Tropsch performance of iron–manganese catalyst incorporated with SiO2. Applied Catalysis A: General. 2005;284(1-2):105-22. doi: org/10.1016/j.apcata.2005.01.025
[31] Rohr F, Lindvåg O, Holmen A, Blekkan EA. Fischer–Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina. Catalysis Today. 2000;58(4):247-54. doi.org/10.1016/S0920-5861(00)00258-3
[32] Lohitharn N, Goodwin Jr JG. Impact of Cr, Mn and Zr addition on Fe Fischer–Tropsch synthesis catalysis: Investigation at the active site level using SSITKA. Journal of Catalysis. 2008;257(1):142-51. doi: org/10.1016/j.jcat.2008.04.015
[33] Todic B, Ma W, Jacobs G, Davis BH, Bukur DB. Effect of process conditions on the product distribution of Fischer–Tropsch synthesis over a Re-promoted cobalt-alumina catalyst using a stirred tank slurry reactor. Journal of catalysis. 2014;311:325-38. doi: org/10.1016/j.jcat.2013.12.009
[34] Liu Z, Jia G, Zhao C, Xing Y. Effective Fe/K Catalyst for Fischer–Tropsch to Light Alkenes. Catalysis Letters. 2023:1-11. doi: org/10.1007/s10562-023-04296-0
[35] Pengnarapat S, Ai P, Reubroycharoen P, Vitidsant T, Yoneyama Y, Tsubaki N. Active Fischer-Tropsch synthesis Fe-Cu-K/SiO2 catalysts prepared by autocombustion method without a reduction step. Journal of energy chemistry. 2018;27(2):432-8. doi: org/10.1016/j.jechem.2017.11.029
[36] Li S, Li A, Krishnamoorthy S, Iglesia E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catalysis Letters. 2001;77:197-205. doi: org/10.1023/A:1013284217689
[37] Ghofran Pakdel M, Zohdi SH, Mirzaei AA. Deactivation of iron Fischer-Tropsch catalyst in the presence of different promoters: Model determination and parameter rstimation using a hybrid ANN/GPLE technique. Physical Chemistry Research. 2023;11(4):761-70. doi: org/10.22036/PCR.2022.338670.2084
[38] Sudsakorn K, Goodwin JG, Jothimurugesan K, Adeyiga AA. Preparation of attrition-resistant spray-dried Fe Fischer−Tropsch catalysts using precipitated SiO2. Industrial & engineering chemistry research. 2001;40(22):4778-84. doi: org/10.1021/ie0101442
[39] Yang Y, Qian W, Zhang H, Han Z, Ma H, Sun Q, et al. Effect of the Zr promoter on precipitated iron-based catalysts for high-temperature Fischer–Tropsch synthesis of light olefins. Catalysis Science & Technology. 2022;12(14):4624-36. doi: org/10.1039/D2CY00146B
[40] Shojaei M. Effect of calcium promoter on nano structure iron catalyst for Fischer–Tropsch synthesis. Journal of Petroleum Science and Technology. 2015;5(1):21. doi: org/10.22078/jpst.2015.440
[41] Hamid HH, Mohd Zabidi NA, Shaharun MS. Effects of promoters on the physicochemical properties of cobalt-Iron catalysts supported on multiwalled-carbon nanotubes. Catalysis Letters. 2023:1-14. doi: org/10.1007/s10562-023-04294-2
[42] Yaghoobpour E, Zamani Y, Zarrinpashne S, Zamaniyan A. Fischer–Tropsch synthesis: Effect of silica on hydrocarbon production over cobalt-based catalysts. Chemical Papers. 2019;73:205-14. doi: org/10.1007/s11696-018-0565-9
[43] Mierczyński P, Dawid B, Mierczynska-Vasilev A, Maniukiewicz W, Witońska I, Vasilev K, et al. Novel bimetallic 1% M-Fe/Al2O3-Cr2O3 (2: 1) (M= Ru, Au, Pt, Pd) catalysts for Fischer-Tropsch synthesis. Catalysis Communications. 2022;172:106559. doi: org/10.1016/j.catcom.2022.106559
[44] Pour AN, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis A: General. 2008;348(2):201-8. doi: org/10.1016/j.apcata.2008.06.045
[45] Peña D, Jensen L, Cognigni A, Myrstad R, Neumayer T, Van Beek W, et al. The Effect of copper loading on iron carbide formation and surface species in iron‐based Fischer–Tropsch synthesis catalysts. ChemCatChem. 2018;10(6):1300-12. doi: org/10.1002/cctc.201701673
[46] Jongsomjit B, Panpranot J, Goodwin Jr JG. Co-support compound formation in alumina-supported cobalt catalysts. Journal of Catalysis. 2001;204(1):98-109. doi: org/10.1006/jcat.2001.3387
[47] Zeng S, Du Y, Su H, Zhang Y. Promotion effect of single or mixed rare earths on cobalt-based catalysts for Fischer–Tropsch synthesis. Catalysis Communications. 2011;13(1):6-9. doi: org/10.1016/j.catcom.2011.06.009
[48] Teimouri Z, Abatzoglou N, Dalai AK. Kinetics and selectivity study of Fischer–Tropsch synthesis to C5+ hydrocarbons: A review. Catalysts. 2021;11(3):330. doi: org/10.3390/catal11030330
[49] Di Z, Feng X, Yang Z, Luo M. Effect of iron precursor on catalytic performance of precipitated iron catalyst for Fischer–Tropsch synthesis reaction. Catalysis Letters. 2020;150:2640-7. doi: org/10.1007/s10562-020-03158-3
[50] Makhura E, Rakereng J, Rapoo O, Danha G. Effect of the operation parameters on the Fischer Tropsch synthesis process using different reactors. Procedia Manufacturing. 2019;35:349-55. doi: org/10.1016/j.promfg.2019.05.051
[51] Ding M, Yang Y, Wu B, Li Y, Wang T, Ma L. Study on reduction and carburization behaviors of iron phases for iron-based Fischer–Tropsch synthesis catalyst. Applied Energy. 2015;160:982-9. doi: org/10.1016/j.apenergy.2014.12.042
[52] Zhang C, Teng B, Yang Y, Tao Z, Hao Q, Wan H, et al. Effect of air-exposure on reduction behavior of a Fe–Mn–Cu–K/SiO2 Fischer-Tropsch synthesis catalyst. Journal of Molecular Catalysis A: Chemical. 2005;239(1-2):15-21. doi: org/10.1016/j.molcata.2005.05.036
[53] Todic B, Mandic M, Nikacevic N, Bukur DB. Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor. Korean Journal of Chemical Engineering. 2018;35:875-89. doi: org/10.1007/s11814-017-0335-3
[54] Todic B, Nowicki L, Nikacevic N, Bukur DB. Fischer–Tropsch synthesis product selectivity over an industrial iron-based catalyst: Effect of process conditions. Catalysis Today. 2016;261:28-39. doi: org/10.1016/j.cattod.2015.09.005
[55] Wan H, Wu B, Zhang C, Xiang H, Li Y. Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer–Tropsch synthesis. Journal of Molecular Catalysis A: Chemical. 2008;283(1-2):33-42. doi: org/10.1016/j.molcata.2007.12.013
[56] Zhang H, Ma H, Zhang H, Ying W, Fang D. Effects of Zr and K promoters on precipitated iron-based catalysts for Fischer–Tropsch synthesis. Catalysis letters. 2012;142:131-7. doi: org/10.1007/s10562-011-0739-3
[57] Aluha J, Braidy N, Dalai A, Abatzoglou N. Low‐temperature Fischer‐Tropsch synthesis using plasma‐synthesized nanometric Co/C and Fe/C catalysts. The Canadian Journal of Chemical Engineering. 2016;94(8):1504-15. doi: org/10.1002/cjce.22537
[58] AL-Zuhairi F, Kadhim W, editors. Effect of Ce-promotion on iron catalysts activity through the synthesis of liquid fuels by the Fischer-Tropsch process. IOP Conference Series: Materials Science and Engineering. Baghdad: IOP Publishing; 2019. doi: org/10.1088/1757-899X/579/1/012017
[59] Tavakoli A, Sohrabi M, Kargari A. Application of Anderson–Schulz–Flory (ASF) equation in the product distribution of slurry phase FT synthesis with nanosized iron catalysts. Chemical Engineering Journal. 2008;136(2-3):358-63. doi: org/10.1016/j.cej.2007.04.017
-