Aerogels, three-dimensional nanostructures: Synthesis methods, characterization and applications
Subject Areas :Morteza Namvar 1 , Mostafa Mahinroosta 2 , Ali Allahverdi 3
1 - M.Sc. Student of Chemical Engineering, Research Laboratory of Inorganic Chemical Process Technologies, faculty of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran.
2 - Ph.D. of Chemical Engineering, Research Laboratory of Inorganic Chemical Process Technologies, faculty of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran.
3 - Professor of Chemical Engineering, Research Laboratory of Inorganic Chemical Process Technologies, Faculty of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran.
Keywords: Applications, Characterization, drying, Synthesis, Aerogels,
Abstract :
In recent years, aerogels attracted more attention due to their outstanding properties and potential applications in a wide variety of technological fields. Aerogels are three-dimensional porous networks or materials with a porous structure obtained from wet gels, where the solvents are replaced by air. A critical step in aerogel formation is the drying of the hydrogel. Many methods have been used to dry aerogel, the most common, safest, and cheapest method among the methods is ambient pressure drying. Due to the high-cost synthesis of monolithic aerogels, in recent years, researchers focused on the preparation of porous aerogels with modern drying methods on a large scale. In this article, aerogel, its types, history, characteristics, classification, preparation methods, properties, and applications of this interesting material are introduced. Aerogels are used in new technical applications as efficient thermal insulation, catalyst, energy storage material, water treatment adsorbent, and sound absorbent. Aerogels are also used in biomedicine and sensors. A discussion on the challenges, limitations, and urgent need to develop new technologies for aerogel production is presented.
[1] Fricke, J.; Journal of Non-Crystalline Solids 100, 169-173, 1988.
[2] Fricke, J.; Emmerling, A.; Journal of Sol-Gel Science and Technology 13, 299-303, 1998.
[3] Namvar, M.; Mahinroosta, M.; Allahverdi, A; Mohammadzadeh, K.; Journal of Non-Crystalline Solids 586, 121561, 2022.
[4] Pierre, A.C.; Pajonk, G.M.; Chemical Reviews 102, 4243-4266, 2002.
[5] Gesser, H.D.; Goswami P.C.; Chemical Reviews 89,765-788, 1989.
[6] Wu, X.; Zhou, J.; Xing, W.; Wang, G.; Cui, H.; Zhuo, S.; Xue, Q.; Yan, Z.; Qiao, S. Z.; Journal of Materials Chemistry 43, 23186-23193, 2012.
[7] Lin, Y.; Ehlert, G.J.; Bukowsky, C.; Sodano, H.A.; ACS Applied Materials & Interfaces 7, 2200-2203, 2011.
[8] Leventis, N.; Sadekar, A.; Chandrasekaran, N.; Sotiriou-Leventis, C.; Chemistry of Materials 22, 2790-2803, 2010.
[9] Namvar, M.; Mahinroosta, M.; Allahverdi, A.; Ceramics International 47, 2222-2229, 2021.
[10] Mahinroosta, M.; Allahverdi, A.; “Production of High Purity α- and γ-Alumina from Aluminum Dross”, Elsevier, Netherlands, 2020.
[11] Allahverdi, A.; Mahinroosta, M.; “Recycling Aluminosilicate Industrial Wastes Into Geopolymer: A Review”, Elsevier, Netherlands, 2020.
[12] Mahinroosta, M.; Allahverdi, A.; Dong, P.; Bassim, N.; Journal of Alloys and Compounds 792, 161-169, 2019.
[13] Maghsoodloorad, H.; Allahverdi, A.; Journal of Materials in Civil Engineering 29, 04017006, 2017.
[14] McNaught, A.D.; Wilkinson, A.; “Compendium of Chemical Terminology”, Blackwell Science Oxford, United Kingdom, 1997.
[15] Aegerter, M.A.; Leventis, N.; Koebel, M.M.; Aerogels Handbook, Springer Science & Business Media, New York, 2011.
[16] Lin, Y.L.; Y, X.W.; Yu, Z.W.; Polymer 10, 623, 2018.
[17] Tang, S.; Zhang, X.; Fan, J.; Li, B.; Li, Z.; Wang, C.; Li, H.; Zhang, P.; Zhou.; J. Applied Materials Today 26, 101399, 2022.
[18] Tafreshi, O.A.; Mosanenzadeh, S.G.; Karamikamkar, S.; Saadatnia, Z.; Park, C.B.; Naguib, H.E.; Materials Today Chemistry 23, 100736. 2022.
[19] Dong, K.; Xu, K.; Wei, N.; Fang, Y.; Qin, Z.; Chemical Engineering Research and Design 179, 227-236. 2022.
[20] Karamikamkar, S.; Naguib, H.E.; Park, C.B.; Advances in Colloid and Interface Science 276, 102101, 2020.
[21] Kistler, S.; Rubber Chemistry and Technology 5, 600-603, 1932.
[22] Alemán, J.V.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R.F.T.; Pure and Applied Chemistry 79, 1801-1829, 2007.
[23] Teichner, S.; “Aerogels of inorganic oxides” in: “Aerogels”, Springer, Berlin, Heidelberg 22-30, 1986.
[24] Brinker, C.; Ward, K.; Keefer, K.; Holupka, E.; Bray, P.; Pearson, R.; “Synthesis and structure of borate based aerogels” in: “Aerogels”, Springer, Berlin, Heidelberg 57-67, 1986.
[25] Broecker, F.; Heckmann, W.; Fischer, F.; Mielke, M.; Schroeder, J.; Stange, A.; “Structural analysis of granular silica aerogels” in: “Aerogels”, Springer, Berlin, Heidelberg 160-166. 1986.
[26] Gash, A.E.; Tillotson, T.M.; Satcher Jr, J.H.; Hrubesh, L.W.; Simpson, R.L. Journal of Non-Crystalline Solids 285, 22-28, 2001.
[27] Peri, J.B.; The Journal of Physical Chemistry 70, 2937-2945, 1966.
[28] Teichner, S.J.; Aerogels of Inorganic Oxides, in: J. Fricke (Ed.) “Aerogels”, Springer, Berlin Heidelberg, 22-30, 1986.
[29] Woignier, T.; Phalippou, J.; Quinson, J.; Pauthe, M.; Laveissiere, F.; Journal of Non-Crystalline Solids 145, 25-32, 1992.
[30] Brinker, C.; Keefer, K.; Schaefer, D.; Ashley, C.; Journal of Non-Crystalline Solids 48, 47-64, 1982.
[31] Tillotson, T.M.; Hrubesh, L.W.; Journal of Non-Crystalline Solids 145, 44-50, 1992.
[32] Lemay, J.; Tillotson, T.; Hrubesh, L.; Pekala, R.; MRS Online Proceedings Library 180, 321-324, 1990.
[33] Tsou, P.; Journal of Non-crystalline Solids 186, 415-427, 1995.
[34] Menaa, B.; Menaa, F.; Guimaraes, C.; Sharts, O.; International Journal of Nanotechnology 7, 1-45, 2010.
[35] Mohammadzadeh, K.; Mahinroosta, M.; Allahverdi, A.; Dong, P.; Bassim, N.; Ceramics International 48, 13154-13162, 2022.
[36] Du, A.; Zhou, B.; Zhang, Z.; Shen, J.; Materials (Basel) 6, 941-968. 2013.
[37] Mahinroosta, M.; Allahverdi, A.; International Conference/Workshop of Inter-islamic Network on Nanotechnology, Materials and Energy Research Center, Karaj, Iran, Feb. 2018.
[38] Mahinroosta, M.M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z.; Materials Today Chemistry 8, 42-55. 2018.
[39] Hench, L.L.; West, J.K.; Chemical Reviews 90, 33-72, 1990.
[40] Jafari, V.; Allahverdi, A. Journal of Ultrafine Grained and Nanostructured Materials 47, 105-112, 2014.
[41] Livage, J.; Henry, M.; Sanchez, C. Progress in Solid State Chemistry 18, 259-341, 1988.
[42] Tamon H.; Kitamura, T.; Okazaki, M.; Journal of Colloid and Interface Science 197, 353-359, 1998.
[43] Wu, X.; Zhong, K.; Ding, J.; Shen, X.; Cui, S.; Zhong, Y.; Ma, J.; Chen, X.; Journal of Non-Crystalline Solids 530, 119826, 2020.
[44] Sert Çok, S.; Gizli, N.; International Journal of Heat and Mass Transfer 188, 122618, 2022.
[45] Poco, J. F.; Satcher Jr, J.H.; Hrubesh, L.W.; Journal of Non-Crystalline Solids 285, 57-63, 2001.
[46] Mahinroosta, M.; Allahverdi, A.; Journal of Cleaner Production 179, 93-102, 2018.
[47] Mo, L.; Shen, Y.; Tan, Y.; Zhang, S.; International Journal of Biological Macromolecules 193, 1488-1498, 2021.
[48] Lermontov, S.A.; Malkova, A.N.; Sipyagina, N.A.; Baranchikov, A.E.; Kopitsa, G.P.; Bespalov, A.S.; Journal of Fluorine Chemistry 109742, 2021.
[49] Sun, M.; Bu, Y.; Feng, J.; Li, C.; Han, S.; Ji, X.; Fan, J.; Microchemical Journal 159, 105573, 2020.
[50] Mekonnen, B.T.; Ding, W.; Liu, H.; Guo, S.; Pang, X.; Ding, Z.; Seid, M..; Journal of Leather Science and Engineering 3, 1-16, 2021.
[51] Zha, J.; Roggendorf, H.; Advanced Materials 3, 522-522, 1991.
[52] Tarameshloo, A.; Kani, E.N.; Allahverdi, A.; Canadian Journal of Civil Engineering 44, 893-898, 2017.
[53] Najafi Kani, E; Allahverdi, A.; Iranian Journal of Materials Science & Engineering 8, 50-60, 2011.
[54] Bhaduri, S.; Materials and Manufacturing Processes 8, 391-392, 1993.
[55] Maleki, H.; Dur˜aes, L.; A. Garc´ıa-Gonz´alez C.; del Gaudio, P.; Portugal, A.; Mahmoudi, M.; Advances in Colloid and Interface Science 236, 1-27, 2016.
[56] García-González, C.A.; Camino-Rey, M.C.; Alnaief, M.; Zetzl, C.; Smirnova, I.; The Journal of Supercritical Fluids 66, 297-306, 2012.
[57] Matson, D.W.; Smith, R.D.; Journal of the American Ceramic Society 72, 871-881, 1989.
[58] Pajonk, G.M. “A Short History of the Preparation of Aerogels and Carbogels”, Sol-Gel Processing and Applications”, Springer, Boston, 1994.
[59] Bisson, A.; Rigacci, A.; Lecomte, D.; Rodier, E.; Achard, P.; Drying Technology 21, 593-628, 2003.
[60] Dorcheh, A.S.; Abbasi, M.; Journal of Materials Processing Technology 199, 10-26, 2008.
[61] Salem, S.; Jazayeri, S.; Bondioli, F.; Allahverdi, A.; Shirvani, M.; Journal of Color Science and Technology 5, 345-352, 2012.
[62] Vafaei, M.; Allahverdi, A.; Advanced Powder Technology 28, 215-222, 2017.
[63] Schwertfeger, F.; Glaubitt, W.; Schubert, U.S.; Journal of Non-Crystalline Solids 145, 85-89, 1992.
[64] Zhanga, T.; Yuana, H.; Wang, S.; Guoa, X.; logoa, R.H.; Li, Yi.; Yang, G.; RSC Adv. 7, 32861-32865, 2017.
[65] Hüsing, N.; Schwertfeger, F.; Tappert, W.; Schubert, U.; Journal of Non-Crystalline Solids 186, 37-43, 1995.
[66] Salem, S.; Jazayeri, S.H.; Bondioli, F.; Allahverdi, A.; Shirvani, M.; Ferrari, A.M.; International Journal of Applied Ceramic Technology 9, 968-978, 2012.
[67] Allahverdi, A.; Pourzade, F.; Iranian Chemical Engineering Journal 11, 48-54, 2012.
[68] Salem, S.; Jazayeri, S.H.; Bondioli, F.; Allahverdi, A.; Shirvani, M.; Thermochimica Acta 521, 191-196, 2011.
[69] Yong, X.G.; Jeremy, B.G.; Journal of Composites Science 4(73), 1-40, 2020.
[70] Woignier, T.; Phalippou. J.; Journal of Non-Crystalline Solids 93, 17-21, 1987.
[71] Yang, W.; Liu, J.; Wang, Y.; Gao, S.; Energy and Buildings 206, 109583, 2020.
[72] Allahverdi, A.; Mahinroosta, M.; Pilehvar, S.; “The First Conference on New Approaches to Energy Conservation, University of Tehran, Tehran, March 2012.
[73] Bakhtiyari, S.; Allahverdi, A.; Ramezanianpoor, A.A.; Parhizkar, T.; Rais-Ghasemi, M.; Iranian Chemical Engineering Journal 10, 62-80, 2011.
[74] Wu, S.; Ning, D.; Xu, D.; Cheng, Y.; Mondal, A.K.; Zou, Q.; Zhu, H.; Huang, F.; Carbohydrate Research 511, 108488, 2022.
[75] Kramer, S.J.; Rubio-Alonso, F.; Mackenzie, J.D.; MRS Proceedings 435, 295, 1996.
[76] Marszewski, M.; Dashti, A.; McNeil, P.E.; Fox, M.; Wall, V.; Butts, D.M.; King, S.C.; Kashanchi, G.N.; Tolbert, S.H.; Dunn, B.; Pilon, L.; Microporous and Mesoporous Materials 330, 111569, 2022.
[77] Bakhtiyari, S.; Allahverdi, A.; Rais-Ghasemi, M.; Ramezanianpour, A.A.; Parhizkar, T.; Zarrabi, B.A.; International Journal of Civil Engineering 9, 215-222, 2011.
[78] Hüsing, N.; Schubert, U.; Angewandte Chemie International Edition 37, 22-45, 1998.
[79] Kim, C.; Kim, K.; Solar Energy Materials and Solar Cells 230, 111224, 2021.
[80] Rao, A.; Nilsen, E.; Einarsrud, M.-A.; Journal of Non-Crystalline Solids 296, 165-171, 2001.
[81] Tajiri, K.; Igarashi, K.; Solar Energy Materials and Solar Cells 54, 189-195, 1998.
[82] Y. Kumar, D. Saxena, 8th International Conference on Advancements in Engineering and Technology, Sangrur, India, March 2020.
[83] Lu, Y.; Liu, Z.; Li, X.; Jiang Yin, X.; Djati Utomo, H.; Energy and Buildings 259, 111866, 2022.
[84] Mahinroosta, M. Journal of Nanostructure in Chemistry, 3(47), 1-6, 2013.
[85] Ülker, Z.; Sanli, D.; Erkey, C.; Elsevier. 157-180, 2014.
[86] Umberto, B.; Energy Procedia 78, 394-399, 2015.
[87] Smirnova, A..; Dong, X..; Hara, H.; Vasiliev, A..; Sammesa, N.; International Journal of Hydrogen Energy 30, 149-158, 2005.
[88] Allahverdi, A.; Mahdavan, M.; Ceramics – Silikaty 57, 305-312, 2013.
[89] Wei, T.-Y.; Chen, C.-H.; Chang, K.-H.; Lu, S.-Y.; Hu, C.-C.; Chemistry of Materials 21, 3228-3233, 2009.
[90] Štandeker, S.; Novak, Z.; Knez, Ž.; Journal of Colloid and Interface Science 310, 362-368, 2007.
[91] Mahinroosta, M.; Allahverdi, A.; Environmental Technology & Innovation 23, 101549, 2021.
[92] Ganji, N.; Allahverdi, A.; Naeimpoor, F.; Mahinroosta, M.; Research on Chemical Intermediates 42, 5395-5412, 2016.
[93] Hartmann, M.; Kullmann, S.; Keller, H. Journal of Materials Chemistry 20, 9002-9017, 2010.
[94] Ferreira-Gonçalves, T.; Constantin, C.; Neagu, M.; Reis, C.P.; Sabri, F.; Simón-Vázquez, R. Biomedicine & Pharmacotherapy 144, 112356, 2021.
[95] Singh, N.; Vinjamur, M.; Mukhopadhyay, M.; The Journal of Supercritical Fluids 181, 105510, 2022.
[96] Iglesias-Mejuto, A.; García-González, C.A.; Materials Science and Engineering: C 131, 112525, 2021.
[97] Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F. Carbohydrate Polymers 111, 505-513, 2014.
[98] Qin, Z.; Lv, Y.; Fang, X.; Zhao, B.; Niu, F.; Min, L.; Pan, K.; Chemical Engineering Journal 427, 131650, 2022.
[99] Pu, H.; Ding, X.; Chen, H.; Dai, R.; Shan, Z. Environmental Technology & Innovation 24, 101874, 2021.
_||_[1] Fricke, J.; Journal of Non-Crystalline Solids 100, 169-173, 1988.
[2] Fricke, J.; Emmerling, A.; Journal of Sol-Gel Science and Technology 13, 299-303, 1998.
[3] Namvar, M.; Mahinroosta, M.; Allahverdi, A; Mohammadzadeh, K.; Journal of Non-Crystalline Solids 586, 121561, 2022.
[4] Pierre, A.C.; Pajonk, G.M.; Chemical Reviews 102, 4243-4266, 2002.
[5] Gesser, H.D.; Goswami P.C.; Chemical Reviews 89,765-788, 1989.
[6] Wu, X.; Zhou, J.; Xing, W.; Wang, G.; Cui, H.; Zhuo, S.; Xue, Q.; Yan, Z.; Qiao, S. Z.; Journal of Materials Chemistry 43, 23186-23193, 2012.
[7] Lin, Y.; Ehlert, G.J.; Bukowsky, C.; Sodano, H.A.; ACS Applied Materials & Interfaces 7, 2200-2203, 2011.
[8] Leventis, N.; Sadekar, A.; Chandrasekaran, N.; Sotiriou-Leventis, C.; Chemistry of Materials 22, 2790-2803, 2010.
[9] Namvar, M.; Mahinroosta, M.; Allahverdi, A.; Ceramics International 47, 2222-2229, 2021.
[10] Mahinroosta, M.; Allahverdi, A.; “Production of High Purity α- and γ-Alumina from Aluminum Dross”, Elsevier, Netherlands, 2020.
[11] Allahverdi, A.; Mahinroosta, M.; “Recycling Aluminosilicate Industrial Wastes Into Geopolymer: A Review”, Elsevier, Netherlands, 2020.
[12] Mahinroosta, M.; Allahverdi, A.; Dong, P.; Bassim, N.; Journal of Alloys and Compounds 792, 161-169, 2019.
[13] Maghsoodloorad, H.; Allahverdi, A.; Journal of Materials in Civil Engineering 29, 04017006, 2017.
[14] McNaught, A.D.; Wilkinson, A.; “Compendium of Chemical Terminology”, Blackwell Science Oxford, United Kingdom, 1997.
[15] Aegerter, M.A.; Leventis, N.; Koebel, M.M.; Aerogels Handbook, Springer Science & Business Media, New York, 2011.
[16] Lin, Y.L.; Y, X.W.; Yu, Z.W.; Polymer 10, 623, 2018.
[17] Tang, S.; Zhang, X.; Fan, J.; Li, B.; Li, Z.; Wang, C.; Li, H.; Zhang, P.; Zhou.; J. Applied Materials Today 26, 101399, 2022.
[18] Tafreshi, O.A.; Mosanenzadeh, S.G.; Karamikamkar, S.; Saadatnia, Z.; Park, C.B.; Naguib, H.E.; Materials Today Chemistry 23, 100736. 2022.
[19] Dong, K.; Xu, K.; Wei, N.; Fang, Y.; Qin, Z.; Chemical Engineering Research and Design 179, 227-236. 2022.
[20] Karamikamkar, S.; Naguib, H.E.; Park, C.B.; Advances in Colloid and Interface Science 276, 102101, 2020.
[21] Kistler, S.; Rubber Chemistry and Technology 5, 600-603, 1932.
[22] Alemán, J.V.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R.F.T.; Pure and Applied Chemistry 79, 1801-1829, 2007.
[23] Teichner, S.; “Aerogels of inorganic oxides” in: “Aerogels”, Springer, Berlin, Heidelberg 22-30, 1986.
[24] Brinker, C.; Ward, K.; Keefer, K.; Holupka, E.; Bray, P.; Pearson, R.; “Synthesis and structure of borate based aerogels” in: “Aerogels”, Springer, Berlin, Heidelberg 57-67, 1986.
[25] Broecker, F.; Heckmann, W.; Fischer, F.; Mielke, M.; Schroeder, J.; Stange, A.; “Structural analysis of granular silica aerogels” in: “Aerogels”, Springer, Berlin, Heidelberg 160-166. 1986.
[26] Gash, A.E.; Tillotson, T.M.; Satcher Jr, J.H.; Hrubesh, L.W.; Simpson, R.L. Journal of Non-Crystalline Solids 285, 22-28, 2001.
[27] Peri, J.B.; The Journal of Physical Chemistry 70, 2937-2945, 1966.
[28] Teichner, S.J.; Aerogels of Inorganic Oxides, in: J. Fricke (Ed.) “Aerogels”, Springer, Berlin Heidelberg, 22-30, 1986.
[29] Woignier, T.; Phalippou, J.; Quinson, J.; Pauthe, M.; Laveissiere, F.; Journal of Non-Crystalline Solids 145, 25-32, 1992.
[30] Brinker, C.; Keefer, K.; Schaefer, D.; Ashley, C.; Journal of Non-Crystalline Solids 48, 47-64, 1982.
[31] Tillotson, T.M.; Hrubesh, L.W.; Journal of Non-Crystalline Solids 145, 44-50, 1992.
[32] Lemay, J.; Tillotson, T.; Hrubesh, L.; Pekala, R.; MRS Online Proceedings Library 180, 321-324, 1990.
[33] Tsou, P.; Journal of Non-crystalline Solids 186, 415-427, 1995.
[34] Menaa, B.; Menaa, F.; Guimaraes, C.; Sharts, O.; International Journal of Nanotechnology 7, 1-45, 2010.
[35] Mohammadzadeh, K.; Mahinroosta, M.; Allahverdi, A.; Dong, P.; Bassim, N.; Ceramics International 48, 13154-13162, 2022.
[36] Du, A.; Zhou, B.; Zhang, Z.; Shen, J.; Materials (Basel) 6, 941-968. 2013.
[37] Mahinroosta, M.; Allahverdi, A.; International Conference/Workshop of Inter-islamic Network on Nanotechnology, Materials and Energy Research Center, Karaj, Iran, Feb. 2018.
[38] Mahinroosta, M.M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z.; Materials Today Chemistry 8, 42-55. 2018.
[39] Hench, L.L.; West, J.K.; Chemical Reviews 90, 33-72, 1990.
[40] Jafari, V.; Allahverdi, A. Journal of Ultrafine Grained and Nanostructured Materials 47, 105-112, 2014.
[41] Livage, J.; Henry, M.; Sanchez, C. Progress in Solid State Chemistry 18, 259-341, 1988.
[42] Tamon H.; Kitamura, T.; Okazaki, M.; Journal of Colloid and Interface Science 197, 353-359, 1998.
[43] Wu, X.; Zhong, K.; Ding, J.; Shen, X.; Cui, S.; Zhong, Y.; Ma, J.; Chen, X.; Journal of Non-Crystalline Solids 530, 119826, 2020.
[44] Sert Çok, S.; Gizli, N.; International Journal of Heat and Mass Transfer 188, 122618, 2022.
[45] Poco, J. F.; Satcher Jr, J.H.; Hrubesh, L.W.; Journal of Non-Crystalline Solids 285, 57-63, 2001.
[46] Mahinroosta, M.; Allahverdi, A.; Journal of Cleaner Production 179, 93-102, 2018.
[47] Mo, L.; Shen, Y.; Tan, Y.; Zhang, S.; International Journal of Biological Macromolecules 193, 1488-1498, 2021.
[48] Lermontov, S.A.; Malkova, A.N.; Sipyagina, N.A.; Baranchikov, A.E.; Kopitsa, G.P.; Bespalov, A.S.; Journal of Fluorine Chemistry 109742, 2021.
[49] Sun, M.; Bu, Y.; Feng, J.; Li, C.; Han, S.; Ji, X.; Fan, J.; Microchemical Journal 159, 105573, 2020.
[50] Mekonnen, B.T.; Ding, W.; Liu, H.; Guo, S.; Pang, X.; Ding, Z.; Seid, M..; Journal of Leather Science and Engineering 3, 1-16, 2021.
[51] Zha, J.; Roggendorf, H.; Advanced Materials 3, 522-522, 1991.
[52] Tarameshloo, A.; Kani, E.N.; Allahverdi, A.; Canadian Journal of Civil Engineering 44, 893-898, 2017.
[53] Najafi Kani, E; Allahverdi, A.; Iranian Journal of Materials Science & Engineering 8, 50-60, 2011.
[54] Bhaduri, S.; Materials and Manufacturing Processes 8, 391-392, 1993.
[55] Maleki, H.; Dur˜aes, L.; A. Garc´ıa-Gonz´alez C.; del Gaudio, P.; Portugal, A.; Mahmoudi, M.; Advances in Colloid and Interface Science 236, 1-27, 2016.
[56] García-González, C.A.; Camino-Rey, M.C.; Alnaief, M.; Zetzl, C.; Smirnova, I.; The Journal of Supercritical Fluids 66, 297-306, 2012.
[57] Matson, D.W.; Smith, R.D.; Journal of the American Ceramic Society 72, 871-881, 1989.
[58] Pajonk, G.M. “A Short History of the Preparation of Aerogels and Carbogels”, Sol-Gel Processing and Applications”, Springer, Boston, 1994.
[59] Bisson, A.; Rigacci, A.; Lecomte, D.; Rodier, E.; Achard, P.; Drying Technology 21, 593-628, 2003.
[60] Dorcheh, A.S.; Abbasi, M.; Journal of Materials Processing Technology 199, 10-26, 2008.
[61] Salem, S.; Jazayeri, S.; Bondioli, F.; Allahverdi, A.; Shirvani, M.; Journal of Color Science and Technology 5, 345-352, 2012.
[62] Vafaei, M.; Allahverdi, A.; Advanced Powder Technology 28, 215-222, 2017.
[63] Schwertfeger, F.; Glaubitt, W.; Schubert, U.S.; Journal of Non-Crystalline Solids 145, 85-89, 1992.
[64] Zhanga, T.; Yuana, H.; Wang, S.; Guoa, X.; logoa, R.H.; Li, Yi.; Yang, G.; RSC Adv. 7, 32861-32865, 2017.
[65] Hüsing, N.; Schwertfeger, F.; Tappert, W.; Schubert, U.; Journal of Non-Crystalline Solids 186, 37-43, 1995.
[66] Salem, S.; Jazayeri, S.H.; Bondioli, F.; Allahverdi, A.; Shirvani, M.; Ferrari, A.M.; International Journal of Applied Ceramic Technology 9, 968-978, 2012.
[67] Allahverdi, A.; Pourzade, F.; Iranian Chemical Engineering Journal 11, 48-54, 2012.
[68] Salem, S.; Jazayeri, S.H.; Bondioli, F.; Allahverdi, A.; Shirvani, M.; Thermochimica Acta 521, 191-196, 2011.
[69] Yong, X.G.; Jeremy, B.G.; Journal of Composites Science 4(73), 1-40, 2020.
[70] Woignier, T.; Phalippou. J.; Journal of Non-Crystalline Solids 93, 17-21, 1987.
[71] Yang, W.; Liu, J.; Wang, Y.; Gao, S.; Energy and Buildings 206, 109583, 2020.
[72] Allahverdi, A.; Mahinroosta, M.; Pilehvar, S.; “The First Conference on New Approaches to Energy Conservation, University of Tehran, Tehran, March 2012.
[73] Bakhtiyari, S.; Allahverdi, A.; Ramezanianpoor, A.A.; Parhizkar, T.; Rais-Ghasemi, M.; Iranian Chemical Engineering Journal 10, 62-80, 2011.
[74] Wu, S.; Ning, D.; Xu, D.; Cheng, Y.; Mondal, A.K.; Zou, Q.; Zhu, H.; Huang, F.; Carbohydrate Research 511, 108488, 2022.
[75] Kramer, S.J.; Rubio-Alonso, F.; Mackenzie, J.D.; MRS Proceedings 435, 295, 1996.
[76] Marszewski, M.; Dashti, A.; McNeil, P.E.; Fox, M.; Wall, V.; Butts, D.M.; King, S.C.; Kashanchi, G.N.; Tolbert, S.H.; Dunn, B.; Pilon, L.; Microporous and Mesoporous Materials 330, 111569, 2022.
[77] Bakhtiyari, S.; Allahverdi, A.; Rais-Ghasemi, M.; Ramezanianpour, A.A.; Parhizkar, T.; Zarrabi, B.A.; International Journal of Civil Engineering 9, 215-222, 2011.
[78] Hüsing, N.; Schubert, U.; Angewandte Chemie International Edition 37, 22-45, 1998.
[79] Kim, C.; Kim, K.; Solar Energy Materials and Solar Cells 230, 111224, 2021.
[80] Rao, A.; Nilsen, E.; Einarsrud, M.-A.; Journal of Non-Crystalline Solids 296, 165-171, 2001.
[81] Tajiri, K.; Igarashi, K.; Solar Energy Materials and Solar Cells 54, 189-195, 1998.
[82] Y. Kumar, D. Saxena, 8th International Conference on Advancements in Engineering and Technology, Sangrur, India, March 2020.
[83] Lu, Y.; Liu, Z.; Li, X.; Jiang Yin, X.; Djati Utomo, H.; Energy and Buildings 259, 111866, 2022.
[84] Mahinroosta, M. Journal of Nanostructure in Chemistry, 3(47), 1-6, 2013.
[85] Ülker, Z.; Sanli, D.; Erkey, C.; Elsevier. 157-180, 2014.
[86] Umberto, B.; Energy Procedia 78, 394-399, 2015.
[87] Smirnova, A..; Dong, X..; Hara, H.; Vasiliev, A..; Sammesa, N.; International Journal of Hydrogen Energy 30, 149-158, 2005.
[88] Allahverdi, A.; Mahdavan, M.; Ceramics – Silikaty 57, 305-312, 2013.
[89] Wei, T.-Y.; Chen, C.-H.; Chang, K.-H.; Lu, S.-Y.; Hu, C.-C.; Chemistry of Materials 21, 3228-3233, 2009.
[90] Štandeker, S.; Novak, Z.; Knez, Ž.; Journal of Colloid and Interface Science 310, 362-368, 2007.
[91] Mahinroosta, M.; Allahverdi, A.; Environmental Technology & Innovation 23, 101549, 2021.
[92] Ganji, N.; Allahverdi, A.; Naeimpoor, F.; Mahinroosta, M.; Research on Chemical Intermediates 42, 5395-5412, 2016.
[93] Hartmann, M.; Kullmann, S.; Keller, H. Journal of Materials Chemistry 20, 9002-9017, 2010.
[94] Ferreira-Gonçalves, T.; Constantin, C.; Neagu, M.; Reis, C.P.; Sabri, F.; Simón-Vázquez, R. Biomedicine & Pharmacotherapy 144, 112356, 2021.
[95] Singh, N.; Vinjamur, M.; Mukhopadhyay, M.; The Journal of Supercritical Fluids 181, 105510, 2022.
[96] Iglesias-Mejuto, A.; García-González, C.A.; Materials Science and Engineering: C 131, 112525, 2021.
[97] Pircher, N.; Veigel, S.; Aigner, N.; Nedelec, J.M.; Rosenau, T.; Liebner, F. Carbohydrate Polymers 111, 505-513, 2014.
[98] Qin, Z.; Lv, Y.; Fang, X.; Zhao, B.; Niu, F.; Min, L.; Pan, K.; Chemical Engineering Journal 427, 131650, 2022.
[99] Pu, H.; Ding, X.; Chen, H.; Dai, R.; Shan, Z. Environmental Technology & Innovation 24, 101874, 2021.