Synthesis and characterization of silver (I) complex containing 4′-(4-quinoline)-2,2′:6′,2′′-terpyridine: Thermal behavior, luminescence study, and cytotoxic properties
Subject Areas :Badri Zaman Momeni 1 * , Sanaz Kazemzade Anari 2 , Zahra Shahsavari 3
1 - Associate Prof. of Inorganic Chemistry, Department of Inorganic Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran.
2 - PhD Student of Inorganic Chemistry, Department of Inorganic Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran.
3 - Assistant Prof. of Biochemistry, Department of Clinical Biochemistry, Faculty of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Keywords: Cytotoxicity, Thermal properties, Luminescence, Silver complex, Terpyridine,
Abstract :
The reaction of AgNO3 with 4′-(4-quinoline)-2,2′:6′,2′′-terpyridine (qtpy) has been resulted in the formation of new silver (I) complex [Ag(qtpy)(NO3)] (1). The product has been characterized by elemental analysis, infrared Fourier transmission spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (1H and 13C NMR). The emission spectrum of complex 1 reveals the presence of π→π* transition with a red shift relative to the free ligand due to the coordination of the ligand to silver center. The thermal properties of 1 indicate that the thermal decomposition process occurs in three steps whereas it is stable up to 320 °C. In addition, the cytotoxic effects of 1 against U87-MG human glioblastoma, MCF-7 human breast cancer, SCOV-3 human ovarian cancer cell line, HT-29 human colorectal cancer, and AGO1522 human normal skin fibroblast cell line were carried out using the MTT assay. The anti-cancer activity of 1 against U87-MG human glioblastoma cell line with IC50 of 6.93 μM is more than that of paclitaxel with IC50 of 27.38 μM.
[1] Yu, X.; Guo, C.; Lu, S.; Chen, Z.; Wang, H.; Li, X.; Macromol. Rapid Commun. 43(14), 2200004, 2022.
[2] Shi, J.; Wang, M.; Chem. Asian J. 16, 4037-4048, 2021.
[3] Panicker, R.R.; Sivaramakrishna, A.; Coord. Chem. Rev. 459, 214426, 2022.
[4] Uflyand, I.E.; Tkachev, V.V.; Zhinzhilo, V.A.; Drogan, E.G.; Burlakova, V.E.; Sokolov, M.E.; Panyushkin, V.T.; Baimuratova, R.K.; Dzhardimalieva, G.I.; J. Mol. Struct. 1250, 131909, 2022.
[5] Yu, X.; Gao, F.; Zhao, W.; Lai, H.; Wei, L.; Yang, C.; Wu, W.; Dalton Trans. 51, 9314-9322, 2022.
[6] McGhie, B.S.; Aldrich-Wright, J.R.; Biomedicines 10(3), 578, 2022.
[7] Peng, K.; Friedrich, A.; Schatzschneider, U.; Chem. Commun. 55, 8142-8145, 2019.
[8] Abel, E.W.; Orrell, K.G.; Osborne, A.G.; Pain, H.M.; Šik, V.; Hursthouse, M.B.; Malik, K.A.; J. Chem. Soc., Dalton Trans. 23, 3441-3449, 1994.
[9] Hou, L.; Li, D.; Ng, S.W.; Acta Cryst. E61, m404–m406, 2005.
[10] Momeni, B.Z.; Kazemzade Anari, S.; Janczak, J.; Fallahpour, R.; J. Inorg. Organomet. Polym. Mater. 32, 2279-2297, 2022.
[11] Momeni, B.Z.; Kazemzade Anari, S.; Torrei, M.; Janczak, J.; Appl. Organomet. Chem. 35, e6179, 2021.
[12] Momeni, B.Z.; Jebraeil, S.M.; Patrick, B.O.; Abd-El-Aziz, A.S.; Polyhedron, 55, 184-191, 2013.
[13] Momeni, B.Z.; Rahimi, F.; Jebraeil, S.M.; Janczak, J.; J. Mol. Struct. 1150, 196-205, 2017.
[14] Momeni, B.Z.; Rahimi, F.; Torrei, M.; Rominger, F.; Appl. Organomet. Chem. 34, e5613, 2020.
[15] Momeni, B.Z.; Rahimi, F.; Rominger, F.; J. Inorg. Organomet. Polym. Mater. 28, 235-250, 2018.
[16] Huang, T.-H.; Zhang, M.-H.; Gao, C.-Y.; Wang, L.-T.; Inorg. Chim. Acta 408, 91-95, 2013.
[17] Deb, S.; Sahoo, A.; Pal, P.; Baitalik, S.; Inorg. Chem. 60, 6836-6851, 2021.
[18] Liu, P.; Chi, Z.; Shi, G.; Dong, H.; Ma, C.; Chen, X.A.; Eur. Polym. 159, 110716, 2021.
[19] Momeni, B. Z.; Karimi, S.; Janczak, J.; J. Mol. Struct. 1273, 134245, 2023.
[20] Momeni, B.Z.; Rahimi, F.; J. Nanostruct. 8, 242, 2018.
[21] Ahmad, E.; Rai, S.; Padhi, S.K.; Inter. J. Hydrog. Energy. 44, 16467-16477, 2019.
[22] Majee K.; Padhi, S. K.; New. J. Chem. 43, 3856-3865, 2019.
[23] Momeni, B.Z.; Doustkhahvajari, F; Inorg. Chim. Acta 487, 145-152, 2019.
[24] Maroń, A.; Czerwińska, K.; Machura, B.; Raposo, L.; Roma-Rodrigues, C.; Fernandes, A.R.; Małecki, J.G.; Szlapa-Kula, A.; Kula, S.; Krompiec, S.; Dalton Trans. 47, 6444-6463, 2018.
[25] Keller, S.; Camenzind, T.N.; Abraham, J.; Prescimone, A.; Häussinger, D.; Constable, E.C.; Housecroft, C.E.; Dalton Trans. 47, 946-957, 2018.
[26] Hannon, M.J.; Painting, C.L.; Plummer, E.A.; Childs, L.J.; Alcock, N.W.; Chem. Eur. J. 8, 2225-2238, 2002.
[27] Luong, L.M.; Lowe, C.D.; Olmstead, M.M.; Balch, A.L.; Polyhedron, 226, 116051, 2022.
[28] Heine, J.; Westemeier, H.; Dehnen, S.; Z. Anorg. Allg. Chem. 636, 996-1001, 2010.
[29] Bruijnincx, P.C.; Sadler, P.J.; Curr. Opin. Chem. Biol. 12, 197-206, 2008.
[30] Raju, S.K.; Karunakaran, A.; Kumar, S.; Sekar, P.; Murugesan, M.; Karthikeyan, M.; Ger. J. Pharm. Biomater. 1, 6-28, 2022.
[31] Gu, Y.-Q.; Zhong, Y.-J; Hu, M.-Q.; Li, H.-Q.; Yang, K.;Dong, Q.; Liang, H.; Chen, Z.-F.; Dalton Trans. 51, 1968-1978, 2022.
[32] Fnfoon, D.Y.; Al-Adilee, K.J.; J. Mol. Struct. 1271, 134089, 2023.
[33] Elkanzi, N.A.A; Hrichi, H.; Salah, H.; Albqmi, M.; Ali, A.M.; Abdou, A.; Polyhedron 230, 116219, 2023.
[34] Malarz, K.; Zych, D.; Gawecki, R.; Kuczak, M.; Musioł, R.; Mrozek-Wilczkiewicz, A.; Eur. J. Med. Chem. 212, 113032, 2021.
[35] Cummings, S.D.; Coord. Chem. Rev. 253, 1495-1516, 2009.
[36] Altmann, S.; Choroba, K.; Skonieczna, M.; Zygadło, D.; Raczyńska-Szajgin, M.; Maroń, A.; Małecki, J.G.; Szłapa-Kula, A.; Tomczyk, M.; Ratuszna, A.; Machura, B.; Szurko, A.; J. Inorg. Biochem. 201, 110809, 2019.
[37] Fik, M.A.; Gorczyński, A.; Kubicki, M.; Hnatejko, Z.; Fedoruk-Wyszomirska, A.; Wyszko, E.; Giel-Pietraszuk, M.; Patroniak, V.; Eur. J. Med. Chem. 86, 456-468, 2014.
[38] Njogu, E.M.; Martincigh, B.S.; Omondi, B.; Nyamori, V.O.; Appl. Organomet. Chem. 32, e4554, 2018.
[39] Mahendiran, D.; Kumar, R.S.; Rahiman, A.K.; Mater. Sci. Eng. C, 76, 601-615, 2017.
[40] Panebianco, R.; Viale, M.; Bertola, N.; Bellia, F.; Vecchio, G.; Dalton Trans. 51, 5000-5003, 2022.
[41] Matada, B.S.; Pattanashettar, R.; Yernale, N.G.; Bioorg. Med. Chem. 32, 115973, 2021.
[42] Yadav, P.; Shah, K.; Bioorganic Chem. 109, 104639, 2021.
[43] Choroba, K.; Machura, B.; Szlapa-Kula, A.; Malecki, J.G.; Raposo, L.; Roma-Rodrigues, C.; Cordeiro, S.; Baptista, P.V.; Fernandes, A.R.; Eur. J. Med. Chem. 218, 113404, 2021.
[44] Grau, J.; Caubet, A.; Roubeau, O.; Montpeyo, D.; Lorenzo, J.; Gamez, P.; Chem. Bio. Chem. 21, 2348-2355, 2020.
[45] Choroba, K.; Machura, B.; Kula, S.; Raposo, L.R.; Fernandes, A.R.; Kruszynksi, R.; Erfurt, K.; Shulpina, L.S.; Kozlov, Y.N.; Shulpin, G.B.; Dalton. Trans. 48, 12656-12673, 2019.
[46] Njogu, E.M.; Nyamori, V.O.; Omondi, B.; J. Mol. Struct. 1153, 202-211, 2018.
[47] Geary, W.J.; Coord. Chem. Rev. 7, 81-122, 1971.
[48] Santos, A.F.; Ferreira, I.P.; Pinheiro, C.B.; Santos, V.G.; Lopes, M.T.; Teixeira, L.R.; Rocha, W.R.; Rodrigues, G.L.; Beraldo, H.; ACS Omega 3, 7027-7035, 2018.
[49] Mughal, E.U.; Mirzaei, M.; Sadiq, A.; Fatima, S.; Naseem, A.; Naeem, N.; Fatima, N.; Kausar, S.; Altaf, A.A.; Zafar, M.N.; Khan, B.A.; R.; Soc. Open Sci. 7, 201208, 2020.
[50] Toledo, D.; Brovelli, F.; Soto-Delgado, J.; Peña, O.; Pivan, J.Y.; Moreno, Y.; J. Mol. Struct. 1153, 282-291, 2018.
[51] Hau, F.K.-W.; Lo, H.-S.; Yam, V.W.-W.; Chem. Eur. J. 22, 3738-3749, 2016.
[52] Sil, A.; Maity, A.; Giri, D.; Patra, S.K.; Sens. Actuators B Chem. 226, 403-411, 2016.
[53] Taghavi, F.; Gholizadeh, M.; Saljooghi, A.S; New J. Chem. 40, 2696-2703, 2016.
_||_[1] Yu, X.; Guo, C.; Lu, S.; Chen, Z.; Wang, H.; Li, X.; Macromol. Rapid Commun. 43(14), 2200004, 2022.
[2] Shi, J.; Wang, M.; Chem. Asian J. 16, 4037-4048, 2021.
[3] Panicker, R.R.; Sivaramakrishna, A.; Coord. Chem. Rev. 459, 214426, 2022.
[4] Uflyand, I.E.; Tkachev, V.V.; Zhinzhilo, V.A.; Drogan, E.G.; Burlakova, V.E.; Sokolov, M.E.; Panyushkin, V.T.; Baimuratova, R.K.; Dzhardimalieva, G.I.; J. Mol. Struct. 1250, 131909, 2022.
[5] Yu, X.; Gao, F.; Zhao, W.; Lai, H.; Wei, L.; Yang, C.; Wu, W.; Dalton Trans. 51, 9314-9322, 2022.
[6] McGhie, B.S.; Aldrich-Wright, J.R.; Biomedicines 10(3), 578, 2022.
[7] Peng, K.; Friedrich, A.; Schatzschneider, U.; Chem. Commun. 55, 8142-8145, 2019.
[8] Abel, E.W.; Orrell, K.G.; Osborne, A.G.; Pain, H.M.; Šik, V.; Hursthouse, M.B.; Malik, K.A.; J. Chem. Soc., Dalton Trans. 23, 3441-3449, 1994.
[9] Hou, L.; Li, D.; Ng, S.W.; Acta Cryst. E61, m404–m406, 2005.
[10] Momeni, B.Z.; Kazemzade Anari, S.; Janczak, J.; Fallahpour, R.; J. Inorg. Organomet. Polym. Mater. 32, 2279-2297, 2022.
[11] Momeni, B.Z.; Kazemzade Anari, S.; Torrei, M.; Janczak, J.; Appl. Organomet. Chem. 35, e6179, 2021.
[12] Momeni, B.Z.; Jebraeil, S.M.; Patrick, B.O.; Abd-El-Aziz, A.S.; Polyhedron, 55, 184-191, 2013.
[13] Momeni, B.Z.; Rahimi, F.; Jebraeil, S.M.; Janczak, J.; J. Mol. Struct. 1150, 196-205, 2017.
[14] Momeni, B.Z.; Rahimi, F.; Torrei, M.; Rominger, F.; Appl. Organomet. Chem. 34, e5613, 2020.
[15] Momeni, B.Z.; Rahimi, F.; Rominger, F.; J. Inorg. Organomet. Polym. Mater. 28, 235-250, 2018.
[16] Huang, T.-H.; Zhang, M.-H.; Gao, C.-Y.; Wang, L.-T.; Inorg. Chim. Acta 408, 91-95, 2013.
[17] Deb, S.; Sahoo, A.; Pal, P.; Baitalik, S.; Inorg. Chem. 60, 6836-6851, 2021.
[18] Liu, P.; Chi, Z.; Shi, G.; Dong, H.; Ma, C.; Chen, X.A.; Eur. Polym. 159, 110716, 2021.
[19] Momeni, B. Z.; Karimi, S.; Janczak, J.; J. Mol. Struct. 1273, 134245, 2023.
[20] Momeni, B.Z.; Rahimi, F.; J. Nanostruct. 8, 242, 2018.
[21] Ahmad, E.; Rai, S.; Padhi, S.K.; Inter. J. Hydrog. Energy. 44, 16467-16477, 2019.
[22] Majee K.; Padhi, S. K.; New. J. Chem. 43, 3856-3865, 2019.
[23] Momeni, B.Z.; Doustkhahvajari, F; Inorg. Chim. Acta 487, 145-152, 2019.
[24] Maroń, A.; Czerwińska, K.; Machura, B.; Raposo, L.; Roma-Rodrigues, C.; Fernandes, A.R.; Małecki, J.G.; Szlapa-Kula, A.; Kula, S.; Krompiec, S.; Dalton Trans. 47, 6444-6463, 2018.
[25] Keller, S.; Camenzind, T.N.; Abraham, J.; Prescimone, A.; Häussinger, D.; Constable, E.C.; Housecroft, C.E.; Dalton Trans. 47, 946-957, 2018.
[26] Hannon, M.J.; Painting, C.L.; Plummer, E.A.; Childs, L.J.; Alcock, N.W.; Chem. Eur. J. 8, 2225-2238, 2002.
[27] Luong, L.M.; Lowe, C.D.; Olmstead, M.M.; Balch, A.L.; Polyhedron, 226, 116051, 2022.
[28] Heine, J.; Westemeier, H.; Dehnen, S.; Z. Anorg. Allg. Chem. 636, 996-1001, 2010.
[29] Bruijnincx, P.C.; Sadler, P.J.; Curr. Opin. Chem. Biol. 12, 197-206, 2008.
[30] Raju, S.K.; Karunakaran, A.; Kumar, S.; Sekar, P.; Murugesan, M.; Karthikeyan, M.; Ger. J. Pharm. Biomater. 1, 6-28, 2022.
[31] Gu, Y.-Q.; Zhong, Y.-J; Hu, M.-Q.; Li, H.-Q.; Yang, K.;Dong, Q.; Liang, H.; Chen, Z.-F.; Dalton Trans. 51, 1968-1978, 2022.
[32] Fnfoon, D.Y.; Al-Adilee, K.J.; J. Mol. Struct. 1271, 134089, 2023.
[33] Elkanzi, N.A.A; Hrichi, H.; Salah, H.; Albqmi, M.; Ali, A.M.; Abdou, A.; Polyhedron 230, 116219, 2023.
[34] Malarz, K.; Zych, D.; Gawecki, R.; Kuczak, M.; Musioł, R.; Mrozek-Wilczkiewicz, A.; Eur. J. Med. Chem. 212, 113032, 2021.
[35] Cummings, S.D.; Coord. Chem. Rev. 253, 1495-1516, 2009.
[36] Altmann, S.; Choroba, K.; Skonieczna, M.; Zygadło, D.; Raczyńska-Szajgin, M.; Maroń, A.; Małecki, J.G.; Szłapa-Kula, A.; Tomczyk, M.; Ratuszna, A.; Machura, B.; Szurko, A.; J. Inorg. Biochem. 201, 110809, 2019.
[37] Fik, M.A.; Gorczyński, A.; Kubicki, M.; Hnatejko, Z.; Fedoruk-Wyszomirska, A.; Wyszko, E.; Giel-Pietraszuk, M.; Patroniak, V.; Eur. J. Med. Chem. 86, 456-468, 2014.
[38] Njogu, E.M.; Martincigh, B.S.; Omondi, B.; Nyamori, V.O.; Appl. Organomet. Chem. 32, e4554, 2018.
[39] Mahendiran, D.; Kumar, R.S.; Rahiman, A.K.; Mater. Sci. Eng. C, 76, 601-615, 2017.
[40] Panebianco, R.; Viale, M.; Bertola, N.; Bellia, F.; Vecchio, G.; Dalton Trans. 51, 5000-5003, 2022.
[41] Matada, B.S.; Pattanashettar, R.; Yernale, N.G.; Bioorg. Med. Chem. 32, 115973, 2021.
[42] Yadav, P.; Shah, K.; Bioorganic Chem. 109, 104639, 2021.
[43] Choroba, K.; Machura, B.; Szlapa-Kula, A.; Malecki, J.G.; Raposo, L.; Roma-Rodrigues, C.; Cordeiro, S.; Baptista, P.V.; Fernandes, A.R.; Eur. J. Med. Chem. 218, 113404, 2021.
[44] Grau, J.; Caubet, A.; Roubeau, O.; Montpeyo, D.; Lorenzo, J.; Gamez, P.; Chem. Bio. Chem. 21, 2348-2355, 2020.
[45] Choroba, K.; Machura, B.; Kula, S.; Raposo, L.R.; Fernandes, A.R.; Kruszynksi, R.; Erfurt, K.; Shulpina, L.S.; Kozlov, Y.N.; Shulpin, G.B.; Dalton. Trans. 48, 12656-12673, 2019.
[46] Njogu, E.M.; Nyamori, V.O.; Omondi, B.; J. Mol. Struct. 1153, 202-211, 2018.
[47] Geary, W.J.; Coord. Chem. Rev. 7, 81-122, 1971.
[48] Santos, A.F.; Ferreira, I.P.; Pinheiro, C.B.; Santos, V.G.; Lopes, M.T.; Teixeira, L.R.; Rocha, W.R.; Rodrigues, G.L.; Beraldo, H.; ACS Omega 3, 7027-7035, 2018.
[49] Mughal, E.U.; Mirzaei, M.; Sadiq, A.; Fatima, S.; Naseem, A.; Naeem, N.; Fatima, N.; Kausar, S.; Altaf, A.A.; Zafar, M.N.; Khan, B.A.; R.; Soc. Open Sci. 7, 201208, 2020.
[50] Toledo, D.; Brovelli, F.; Soto-Delgado, J.; Peña, O.; Pivan, J.Y.; Moreno, Y.; J. Mol. Struct. 1153, 282-291, 2018.
[51] Hau, F.K.-W.; Lo, H.-S.; Yam, V.W.-W.; Chem. Eur. J. 22, 3738-3749, 2016.
[52] Sil, A.; Maity, A.; Giri, D.; Patra, S.K.; Sens. Actuators B Chem. 226, 403-411, 2016.
[53] Taghavi, F.; Gholizadeh, M.; Saljooghi, A.S; New J. Chem. 40, 2696-2703, 2016.