Preparation of Nano-particles of CrN and Cr2N in N2 Atmosphere. Thermal investigation of Cr, Using TG and DSC
Subject Areas :
1 - Sharf university of Technology
Keywords: chromium, Thermal analysis, TGA, DSC, chromium nitride,
Abstract :
Over the past decade, intermediate metal nitride coatings, mainly chromium-based, have attracted considerable attention due to their potential applications in many fields such as magnetic, electronic, optical and / or decorative coatings. Chromium nitride (CrN) compounds have many applications for protection against wear and corrosion due to their good mechanical properties (wear resistance, low friction coefficient, and high hardness) and chemical properties (oxidation and corrosion resistance). In this research, the synthesis of CrN and Cr2N compounds in nitrogen atmosphere has been carried out. For this purpose, during the synthesis, the thermal behavior of the materials in the reaction medium was investigated using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) under nitrogen gas atmosphere from 25 to 1600 °C. The reaction enthalpy was calculated at specific temperature intervals. The results confirmed that in the nitrogen atmosphere the chromium reaction occurs between 100-1600 °C in two separate phases (both endothermic). The resulting products were identified using the XRD technique. Both techniques produced results that confirmed the different combinations in the production process. The morphology of the obtained products was examined by SEM electron microscopy.
[1] Shan, C.; Hou, X.; Choy, K.; Choquet, P.; Surface and coatings thechnology 202(10), 2147-2151, 2008.
[2] Lee, S.; Kakati, N.; Maiti, J.; Jee, S.; Thin Solid Films 529, 374-379, 2013.
[3] Al Zoubi, W.; Yoon, D.K.; Ko, M.L.; Journal of Molecular Liquids 308, 113160, 2020.
[4] Vetter, J.; Surface and Coatings Technology 76-77, 719-724, 1995.
[5] Huang, M.; Mishra, S.B.; Liu, S.; ACS Sustainable Chemistry & Engineering 5(9), 8127-8136, 2017.
[6] Zhang, H.; Ping Li, P.; Wang, Z.; Cui, W.W.; Zhang, Y.; Zheng, S.; ACS Sustainable Chemistry & Engineering 6(5), 6811-6819, 2018.
[7] Zhao, Z.B.; Reck, Z.U.; Yalisove, S.M.; Billelo, J.C.; Surface and Coatings Technology 185(2), 329-339, 2004.
[8] Wiecinski, P.; Smolik, J.; Garbacz, H.; Kurzydlowski, K.J.; Thin Solid Films 519(12), 4069-4073, 2011.
[9] Fenker, M.; M. Balzer.; H. Kappl.; Thin Solid Films 515(1), 27-32, 2006.
[10] Das, B.; Behm, M.; Lindbergh, G.; Reddy, M.V.; Advanced Powder Technology 26(3), 783-788, 2015
[11] Feng, W.; Li, D.; Li, W.F.; Ma, S.; Li, Y.B.; Xiong, D.K.; Zhang, W.S.; Zhang, Z.D.l.; Journal of Alloys and Compounds 425(1-2), 4-9, 2006.
[12] Shen, L.; Sun, N.; Cheng, T.; Cui, Q.; Materials Letters 62(10-11), 1469-1471, 2008.
[13] Conde, A.; Cristóbal, A.B.; Fuentes, G.; Tate, T.; de Damborenea, J.; Surface and Coatings Technology 201(6), 3588-3595, 2006.
[14] Lin, J.; Mishra, B.; Moore, J.J.; Sproul, W.D.; Surface and Coatings Technology 202(14), 3272-3283, 2008.
[15] Hu, X.; Qiu, L.; Pan, X.; Zhang, J.; Li, X.; Zhang, S.; Dong, C.; Vacuum 199, 110902, 2022.
[16] Mayrhofer, P.; Willmann, H., Mitterer, C.; Surface and Coatings Technology 146, 222-228, 2001.
[17] Meng, C.; Yang, L.; Wu, Y.; Tan, J.; Dang, W.; He, X.; Ma, X.; Journal of Nuclear Materials 515, 354-369, 2019.
_||_
[1] Shan, C.; Hou, X.; Choy, K.; Choquet, P.; Surface and coatings thechnology 202(10), 2147-2151, 2008.
[2] Lee, S.; Kakati, N.; Maiti, J.; Jee, S.; Thin Solid Films 529, 374-379, 2013.
[3] Al Zoubi, W.; Yoon, D.K.; Ko, M.L.; Journal of Molecular Liquids 308, 113160, 2020.
[4] Vetter, J.; Surface and Coatings Technology 76-77, 719-724, 1995.
[5] Huang, M.; Mishra, S.B.; Liu, S.; ACS Sustainable Chemistry & Engineering 5(9), 8127-8136, 2017.
[6] Zhang, H.; Ping Li, P.; Wang, Z.; Cui, W.W.; Zhang, Y.; Zheng, S.; ACS Sustainable Chemistry & Engineering 6(5), 6811-6819, 2018.
[7] Zhao, Z.B.; Reck, Z.U.; Yalisove, S.M.; Billelo, J.C.; Surface and Coatings Technology 185(2), 329-339, 2004.
[8] Wiecinski, P.; Smolik, J.; Garbacz, H.; Kurzydlowski, K.J.; Thin Solid Films 519(12), 4069-4073, 2011.
[9] Fenker, M.; M. Balzer.; H. Kappl.; Thin Solid Films 515(1), 27-32, 2006.
[10] Das, B.; Behm, M.; Lindbergh, G.; Reddy, M.V.; Advanced Powder Technology 26(3), 783-788, 2015
[11] Feng, W.; Li, D.; Li, W.F.; Ma, S.; Li, Y.B.; Xiong, D.K.; Zhang, W.S.; Zhang, Z.D.l.; Journal of Alloys and Compounds 425(1-2), 4-9, 2006.
[12] Shen, L.; Sun, N.; Cheng, T.; Cui, Q.; Materials Letters 62(10-11), 1469-1471, 2008.
[13] Conde, A.; Cristóbal, A.B.; Fuentes, G.; Tate, T.; de Damborenea, J.; Surface and Coatings Technology 201(6), 3588-3595, 2006.
[14] Lin, J.; Mishra, B.; Moore, J.J.; Sproul, W.D.; Surface and Coatings Technology 202(14), 3272-3283, 2008.
[15] Hu, X.; Qiu, L.; Pan, X.; Zhang, J.; Li, X.; Zhang, S.; Dong, C.; Vacuum 199, 110902, 2022.
[16] Mayrhofer, P.; Willmann, H., Mitterer, C.; Surface and Coatings Technology 146, 222-228, 2001.
[17] Meng, C.; Yang, L.; Wu, Y.; Tan, J.; Dang, W.; He, X.; Ma, X.; Journal of Nuclear Materials 515, 354-369, 2019.