Investigating the kaolin activation methods in ultrasonic-assisted hydrothermal synthesis of zeolite A
Subject Areas :Mahboobeh Ejtemaei 1 , Sepehr Sadighi 2 , Aligholi Niaei 3 , Mehdi Rashidzadeh 4 , Dariush Salari 5
1 - Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz
2 - Catalysis Development Technologies Division, Research Institute of Petroleum Industry
3 - Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering
4 - Catalysis Development Technologies Division, Research Institute of Petroleum Industry
5 - Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz
Keywords: Kaolin, ultrasound, Hydrothermal, LTA, Alkaline fusion,
Abstract :
Zeolites LTA is widely used as an adsorbent, ion exchanger, and catalyst in the chemical and petrochemical industries. In the present study, at first, the Na form of zeolite A was synthesized by hydrothermal method from kaolin, using calcination and alkali fused activation methods. The samples were characterized by XRD, SEM, N2physisorption techniques. The obtained results showed that crystallization time is lower via the kaolin calcination route in comparison to the alkaline fusion. Moreover, the alkali activation method is more suitable compared to the calcination one and leads to the synthesis of zeolite with high purity. Sonochemical treatment reduced the crystallization and synthesis time. In addition, the water sorption capacity of the K and Na forms of zeolites prepared via the kaolin fusion were 14.35 and 24.36 wt. %, and for the samples prepared via fusion-extraction were 14.7 and 25.06 wt. %, respectively. These water sorption capacities are higher than the values reported for the samples prepared using metakaolin (equal to 12.24 and 18.27 wt %).
[1] Maesen, T.; Marcus, B.; “The zeolite scene—An overview” in: van Bekkum, H.; Flanigen, E.M.; Jacobs, P.A.; Jansen, J.C.; “Studies in Surface Science and Catalysis”, Elsevier, Amesterdam, 2001.
[2] Hadi, N.; Farzi, A.; Alizadeh, R.; Niaei, A.; Microporous Mesoporous Mater. 306, 110406-110422, 2020.
[3] Shams, K.; Mirmohammadi, S.J.; Microporous Mesoporous Mater. 106 (1), 268-277, 2007.
[4] Kalantari, N.; Farzi, A.; Çaylak Delibaş, N.; Niaei, A.; Salari, D.; Res. Chem. Intermed. 47 (12), 4957-4984, 2021.
[5] Loiola, A.R.; Andrade, J.C.R.A.; Sasaki, J.M.; da Silva, L.R.D.; J. Colloid Interface Sci. 367 (1), 34-39, 2012.
[6] Jaramillo, E.; Chandross, M.; J. Phys. Chem. B. 108 (52), 20155-20159, 2004.
[7] Kulprathipanja, S., “Zeolites in Industrial Separation and Catalysis”. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.
[8] Henao-Sierra, W.; Romero-Sáez, M.; Gracia, F.; Cacua, K.; Buitrago-Sierra, R.; Microporous Mesoporous Mater. 265, 250-257, 2018.
[9] Castillo, J.M.; Silvestre-Albero, J.; Rodriguez-Reinoso, F.; Vlugt, T.J.H.; Calero, S.; Phys. Chem. Chem. Phys. 15 (40), 17374-17382, 2013.
[10] Alkan, M.; Hopa, Ç.; Yilmaz, Z.; Güler, H.; Microporous Mesoporous Mater. 86 (1), 176-184, 2005.
[11] Maia, A.Á.B.; Angélica, R.S.; de Freitas Neves, R.; Pöllmann, H.; Straub, C.; Saalwächter, K.; Appl. Clay Sci. 87, 189-196, 2014.
[12] Maia, A.Á.B.; Neves, R.F.; Angélica, R.S.; Pöllmann, H.; Appl. Clay Sci. 108, 55-6, 2015.
[13] Ayele, L.; Pérez-Pariente, J.; Chebude, Y.; Díaz, I.; Appl. Clay Sci. 132-133, 485-490, 2016.
[14] Bukhari, S.S.; Rohani, S.; Kazemian, H.; Ultrason. Sonochemistry 28, 47-53, 2016.
[15] Andaç, Ö.; Tatlıer, M.; Sirkecioğlu, A.; Ece, I.; Erdem-Şenatalar, A.; Microporous Mesoporous Mater. 79 (1), 225-233, 2005.
[16] Ojumu, T.V.; Du Plessis, P.W.; Petrik, L.F.; Ultrason. Sonochemistry 31, 342-349, 2016.
[17] Otieno, S.O.; Kengara, F.O.; Kemmegne-Mbouguen, J.C; Langmi, H.W.; Kowenje, C.B.O.; Mokaya, R.; Microporous Mesoporous Mater. 290, 109668-109675, 2019.
[18] Bhattacharyya, K.G.; Gupta, S.S.; Adv. Colloid Interface Sci. 140 (2), 114-131, 2008.
[19] Abdullahi, T.; Harun, Z.; Othman, M.H.D.; Adv Powder Technol. 28 (8), 1827-1840, 2017.
[20] Ayele, L.; Pérez-Pariente, J.; Chebude, Y.; Díaz, I.; Microporous Mesoporous Mater. 215, 29-36, 2015.
[21] Melo, C.R.; Riella, H.G.; Kuhnen, N.C.; Angioletto, E.; Melo, A.R.; Bernardin, A.M.; da Rocha, M.R.; da Silva, L.; Mater. Sci. Eng. B. 177 (4), 345-349, 2012.
[22] Zhang, X.; Tang, D.; Jiang, G.; Adv Powder Technol. 24 (3), 689-696, 2013.
[23] Cheung, O.; Hedin, N.; RSC Adv. 4 (28), 14480-14494, 2014.
[24] Valiullin, R.; Kärger, J.; Cho, K.; Choi, M.; Ryoo, R.; Microporous Mesoporous Mater.142 (1), 236-244, 2011.
[25] Prokof'ev, V.Y.; Gordina, N.E.; Borisova, T.N.; Shamanaeva, N.V.; Microporous Mesoporous Mater. 280, 116-123, 2019.
[26] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S.W.; Pure Appl. Chem. 87 (9-10), 1051-1069, 2015.
[27] Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B.; Catal Today. 41 (1), 207-219, 1998.
_||_[1] Maesen, T.; Marcus, B.; “The zeolite scene—An overview” in: van Bekkum, H.; Flanigen, E.M.; Jacobs, P.A.; Jansen, J.C.; “Studies in Surface Science and Catalysis”, Elsevier, Amesterdam, 2001.
[2] Hadi, N.; Farzi, A.; Alizadeh, R.; Niaei, A.; Microporous Mesoporous Mater. 306, 110406-110422, 2020.
[3] Shams, K.; Mirmohammadi, S.J.; Microporous Mesoporous Mater. 106 (1), 268-277, 2007.
[4] Kalantari, N.; Farzi, A.; Çaylak Delibaş, N.; Niaei, A.; Salari, D.; Res. Chem. Intermed. 47 (12), 4957-4984, 2021.
[5] Loiola, A.R.; Andrade, J.C.R.A.; Sasaki, J.M.; da Silva, L.R.D.; J. Colloid Interface Sci. 367 (1), 34-39, 2012.
[6] Jaramillo, E.; Chandross, M.; J. Phys. Chem. B. 108 (52), 20155-20159, 2004.
[7] Kulprathipanja, S., “Zeolites in Industrial Separation and Catalysis”. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.
[8] Henao-Sierra, W.; Romero-Sáez, M.; Gracia, F.; Cacua, K.; Buitrago-Sierra, R.; Microporous Mesoporous Mater. 265, 250-257, 2018.
[9] Castillo, J.M.; Silvestre-Albero, J.; Rodriguez-Reinoso, F.; Vlugt, T.J.H.; Calero, S.; Phys. Chem. Chem. Phys. 15 (40), 17374-17382, 2013.
[10] Alkan, M.; Hopa, Ç.; Yilmaz, Z.; Güler, H.; Microporous Mesoporous Mater. 86 (1), 176-184, 2005.
[11] Maia, A.Á.B.; Angélica, R.S.; de Freitas Neves, R.; Pöllmann, H.; Straub, C.; Saalwächter, K.; Appl. Clay Sci. 87, 189-196, 2014.
[12] Maia, A.Á.B.; Neves, R.F.; Angélica, R.S.; Pöllmann, H.; Appl. Clay Sci. 108, 55-6, 2015.
[13] Ayele, L.; Pérez-Pariente, J.; Chebude, Y.; Díaz, I.; Appl. Clay Sci. 132-133, 485-490, 2016.
[14] Bukhari, S.S.; Rohani, S.; Kazemian, H.; Ultrason. Sonochemistry 28, 47-53, 2016.
[15] Andaç, Ö.; Tatlıer, M.; Sirkecioğlu, A.; Ece, I.; Erdem-Şenatalar, A.; Microporous Mesoporous Mater. 79 (1), 225-233, 2005.
[16] Ojumu, T.V.; Du Plessis, P.W.; Petrik, L.F.; Ultrason. Sonochemistry 31, 342-349, 2016.
[17] Otieno, S.O.; Kengara, F.O.; Kemmegne-Mbouguen, J.C; Langmi, H.W.; Kowenje, C.B.O.; Mokaya, R.; Microporous Mesoporous Mater. 290, 109668-109675, 2019.
[18] Bhattacharyya, K.G.; Gupta, S.S.; Adv. Colloid Interface Sci. 140 (2), 114-131, 2008.
[19] Abdullahi, T.; Harun, Z.; Othman, M.H.D.; Adv Powder Technol. 28 (8), 1827-1840, 2017.
[20] Ayele, L.; Pérez-Pariente, J.; Chebude, Y.; Díaz, I.; Microporous Mesoporous Mater. 215, 29-36, 2015.
[21] Melo, C.R.; Riella, H.G.; Kuhnen, N.C.; Angioletto, E.; Melo, A.R.; Bernardin, A.M.; da Rocha, M.R.; da Silva, L.; Mater. Sci. Eng. B. 177 (4), 345-349, 2012.
[22] Zhang, X.; Tang, D.; Jiang, G.; Adv Powder Technol. 24 (3), 689-696, 2013.
[23] Cheung, O.; Hedin, N.; RSC Adv. 4 (28), 14480-14494, 2014.
[24] Valiullin, R.; Kärger, J.; Cho, K.; Choi, M.; Ryoo, R.; Microporous Mesoporous Mater.142 (1), 236-244, 2011.
[25] Prokof'ev, V.Y.; Gordina, N.E.; Borisova, T.N.; Shamanaeva, N.V.; Microporous Mesoporous Mater. 280, 116-123, 2019.
[26] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S.W.; Pure Appl. Chem. 87 (9-10), 1051-1069, 2015.
[27] Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B.; Catal Today. 41 (1), 207-219, 1998.