Low temperature ethanol vapor sensor based on H-CeO2/Fe nanocomposite:Ultra-sensitive, selective and repeatable performance
Subject Areas :elnaz yousefian 1 , susan samadi 2 * , Khadijeh Kalateh 3 , mohammad yousefi 4 , Ali Parsa 5
1 - PhD Student of Analytical Chemistry, Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
2 - Assistant Professor of Analytical Chemistry, Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
3 - Assistant Professor of Iorganic Chemistry, Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
4 - Associate Professor of Inorganic Chemistry, Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
5 - Assistant Professor of Analytical Chemistry, Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
Keywords: nanocomposite, Gas sensor, Volatile Organic Compounds (VOCs), Hollow ceria (H-CeO2),
Abstract :
In this paper, hollow-CeO2/Fe (H-CeO2/Fe) nanocomposite was synthesized by hydrothermal assisted sol-gel method and the sensitivity of this gas sensor to ethanol, 2-propanol, and methanol was investigated. The structural properties and morphology of H-CeO2/Fe nanocomposite were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), BET, and transmission electron microscopy (TEM). The synthesized sensor sensitivity to ethanol was higher than the other volatile organic compounds at 29 °C and relative humidity (RH) of 45%. The sensitivity, reproducibility, response, and recovery times as performance characteristics and relative standard deviation (RSD), limit of detection (LOD), and determination coefficient were also evaluated. The results showed that the H-CeO2/Fe sensor could be used to quantitative and qualitative analysis of ethanol. The response mechanism of the sensor to ethanol was also discussed.
[1] Righettoni, M.; Tricoli, A.; Pratsinis, S.E.; Anal. Chem. 82, 3581–3587, 2010.
[2] Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J.Q.; Sens. Actuat. B: Chem. 283, 590–601, 2019.
[3] Hunter, G.W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P.D.; Johnson, K.; Liu, C.C.; Miller, D.; Oralkan, O.; Hesketh, P.J.; Manickam, P.; Vander Wal, R.L.; J. Electrochem. Soc. 167, 037570, 2020.
[4] Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I.; Chemosensors 89(4), 105, 2020.
[5] Zito, C.A.; Perfecto, T.M.; Dippel, A.C.; Volanti, D.P.; Koziej, D.; ACS Appl. Mater. Interfaces 12(15), 17745–17751, 2020.
[6] Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D.; ACS Sens. 2(7), 897–902, 2017.
[7] Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Thupthimchun, W.; Samransuksamer, B.; Choopun, S.; Ceram. Int. 43(1), 557-566, 2017.
[8] Vuong, N.M.; Hieu, N.M.; Hieu, H.N.; Yi, H.; Kim, D.; Han, Y.S.; Kim, M.; Sens. Actuat. B Chem. 192, 327– 333, 2014.
[9] Wang, P.; Sui, L.; Yu, H.; Zhang, X.; Cheng, X.; Gao, S.; Zhao, H.; Huo, L.; Xu, Y.; Wu, H.; Sens. Actuat. B Chem. 326, 128796, 2021.
[10] Majhi, S.M.; Rai, P.; Yu, Y.; ACS Appl. Mater. Interfaces 7(18), 9462–9468, 2015.
[11] Liu, J.; Dai, M.; Wang, T.; Sun, P.; Liang, X.; Lu, G.; Shimanoe, K.; Yamazoe, N.; ACS Appl. Mater. Interfaces 8(10), 6669–6677, 2016.
[12] Su, C.; Zhang, L.; Han, Y.; Ren, C.; Zeng, M.; Zhou, Z.; Su, Y.; Hu, N.; Wei, H.; Yang, Z.; Sens. Actuat. B. Chem. 304, 127347, 2020.
[13] Cao, P.; Yang, Z.; Navale, S.T.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D.; Sens. Actuat. B Chem. 298, 126850, 2019.
[14] Deng, W.; Chen, D.; Hu, J.; Chen, L.; RSC Adv. 98(5), 80158-80169, 2015.
[15] Caruso, R.; Susha, A.; Caruso, F.; Chem. Mater. 13(2), 400-409, 2001.
[16] Hu, J.; Chen, M.; Fang, X.; Wu, L.; Chem. Soc. Rev. 11(40), 5472, 2011.
[17] Zhang, J.; J. Phys. Chem. Lett. 1(4), 686-695, 2010.
[18] Zakaria, S.A.; Samadi, S.; Cordshooli, G.A.; Sens. Actuat. A Phys. 318, 112226, 2021.
[19] Hu, J.; Sun, Y.; Xue, Y.; Zhang, M.; Li, P.; Lian, K.; Zhuiykov, S.; Zhang, W.; Chen, Y.; Sens. Actuat. B Chem. 257, 124–135, 2018.
[20] Rasouli, Z.; Yousefi, M.; Samadi, S.; Kalateh, K.; Torbati, M.B.; J. Nanoanalysis 4(4), 280-289, 2018.
[21] Samadi, S.; Cordshooli, G.A.; Yousefi, M.; Kalateh, K.; Zakaria, S.A.; Sen. Review 38(4), 458-466, 2018.
[22] Yan, S.; Liang, X.; Song, H.; Ma, S.; Lu, Y.; Ceram. Int. 44(1), 358-363, 2018.
[23] Hosseinzadeh, H.; Tohidi, G.; J. Saudi Chem. Soc. 101371, 2021.
[24] Burgués, J.; Jiménez-Soto, J.M.; Marco, S.; Anal. Chim. Acta. 1013, 13-25, 2018.
[25] Song, Y.; Zhang, Y.; Ma, M.; Ren, J.; Liu, C.; Tan, J.; Ceram. Int. 46, 16337–16344, 2020.
[26] Xu, J.; Han, J.; Zhang, Y.; Sun, Y.; Xie, B.; Sens. Actuat. B Chem. 132, 334–339, 2008.
_||_[1] Righettoni, M.; Tricoli, A.; Pratsinis, S.E.; Anal. Chem. 82, 3581–3587, 2010.
[2] Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J.Q.; Sens. Actuat. B: Chem. 283, 590–601, 2019.
[3] Hunter, G.W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P.D.; Johnson, K.; Liu, C.C.; Miller, D.; Oralkan, O.; Hesketh, P.J.; Manickam, P.; Vander Wal, R.L.; J. Electrochem. Soc. 167, 037570, 2020.
[4] Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I.; Chemosensors 89(4), 105, 2020.
[5] Zito, C.A.; Perfecto, T.M.; Dippel, A.C.; Volanti, D.P.; Koziej, D.; ACS Appl. Mater. Interfaces 12(15), 17745–17751, 2020.
[6] Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D.; ACS Sens. 2(7), 897–902, 2017.
[7] Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Thupthimchun, W.; Samransuksamer, B.; Choopun, S.; Ceram. Int. 43(1), 557-566, 2017.
[8] Vuong, N.M.; Hieu, N.M.; Hieu, H.N.; Yi, H.; Kim, D.; Han, Y.S.; Kim, M.; Sens. Actuat. B Chem. 192, 327– 333, 2014.
[9] Wang, P.; Sui, L.; Yu, H.; Zhang, X.; Cheng, X.; Gao, S.; Zhao, H.; Huo, L.; Xu, Y.; Wu, H.; Sens. Actuat. B Chem. 326, 128796, 2021.
[10] Majhi, S.M.; Rai, P.; Yu, Y.; ACS Appl. Mater. Interfaces 7(18), 9462–9468, 2015.
[11] Liu, J.; Dai, M.; Wang, T.; Sun, P.; Liang, X.; Lu, G.; Shimanoe, K.; Yamazoe, N.; ACS Appl. Mater. Interfaces 8(10), 6669–6677, 2016.
[12] Su, C.; Zhang, L.; Han, Y.; Ren, C.; Zeng, M.; Zhou, Z.; Su, Y.; Hu, N.; Wei, H.; Yang, Z.; Sens. Actuat. B. Chem. 304, 127347, 2020.
[13] Cao, P.; Yang, Z.; Navale, S.T.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D.; Sens. Actuat. B Chem. 298, 126850, 2019.
[14] Deng, W.; Chen, D.; Hu, J.; Chen, L.; RSC Adv. 98(5), 80158-80169, 2015.
[15] Caruso, R.; Susha, A.; Caruso, F.; Chem. Mater. 13(2), 400-409, 2001.
[16] Hu, J.; Chen, M.; Fang, X.; Wu, L.; Chem. Soc. Rev. 11(40), 5472, 2011.
[17] Zhang, J.; J. Phys. Chem. Lett. 1(4), 686-695, 2010.
[18] Zakaria, S.A.; Samadi, S.; Cordshooli, G.A.; Sens. Actuat. A Phys. 318, 112226, 2021.
[19] Hu, J.; Sun, Y.; Xue, Y.; Zhang, M.; Li, P.; Lian, K.; Zhuiykov, S.; Zhang, W.; Chen, Y.; Sens. Actuat. B Chem. 257, 124–135, 2018.
[20] Rasouli, Z.; Yousefi, M.; Samadi, S.; Kalateh, K.; Torbati, M.B.; J. Nanoanalysis 4(4), 280-289, 2018.
[21] Samadi, S.; Cordshooli, G.A.; Yousefi, M.; Kalateh, K.; Zakaria, S.A.; Sen. Review 38(4), 458-466, 2018.
[22] Yan, S.; Liang, X.; Song, H.; Ma, S.; Lu, Y.; Ceram. Int. 44(1), 358-363, 2018.
[23] Hosseinzadeh, H.; Tohidi, G.; J. Saudi Chem. Soc. 101371, 2021.
[24] Burgués, J.; Jiménez-Soto, J.M.; Marco, S.; Anal. Chim. Acta. 1013, 13-25, 2018.
[25] Song, Y.; Zhang, Y.; Ma, M.; Ren, J.; Liu, C.; Tan, J.; Ceram. Int. 46, 16337–16344, 2020.
[26] Xu, J.; Han, J.; Zhang, Y.; Sun, Y.; Xie, B.; Sens. Actuat. B Chem. 132, 334–339, 2008.