Preparation, characterization of graphene oxide nano catalyst functionalized copper-metformin complex and investigation of its catalytic activity in synthesis of tetrahydropyridine derivatives in mild condition
Subject Areas :
1 - Department of Chemistry, Qeshm Branch, Islamic Azad University, Qeshm, Iran
Keywords: Copper, Graphene oxide, Heterogeneous catalysis, complex, tetrahydropyridine,
Abstract :
In this research, at first, the graphene oxide sheets were prepared by the Hummers method and in continuation metformin molecule was linked to the edges of graphene oxide through the nucleophilic reaction of amine moieties of metformin with carbonyl groups of graphene oxide by covalent bonding, followed by coordination copper metal on nitrogen atoms of metformin and formation of graphene oxide copper-metformin complex. The prepared nanocatalyst was well characterized by various techniques such as FT-IR, XRD, SEM, EDX, TGA and ICP-OES. All analyses confirmed the successful immobilization of this complex on the surface of GO. The synthesized catalyst was applied to evaluate its performance in the synthesis of tetrahydropyridine derivatives by the reaction of aryl aldehydes, aryl amines and ethyl acetoacetate which this method exhibited good catalytic efficiency with a high yield of products. Moreover, the suggested catalyst could be recycled for several times consecutive cycles without a noticeable decrease in its catalytic activity or metal leaching.
[1] Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Ruoff, R.S.; Nature, 442, 282-286, 2006.
[2] Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang. D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.; Science 306, 666–669, 2004.
[3] Fan, Y.; Wang, L.; Li, J.; Li, J.; Sun, S.; Chen, F.; Jiang, W.; Carbon 48, 1743-1749, 2010.
[4] Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Van Wees, B.J.; Nature, 448, 571-574, 2007.
[5] Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N.; Nano Lett. 8, 902-907, 2008.
[6] Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.; ACS Nano 4, 4806-4814, 2010.
[7] Keyhaniyan, M.; Shiri, A.; Eshghi, H.; Khojastehnezhad, A.; New J. Chem. 42, 19433-19441, 2018.
[8] Khojastehnezhad, A.; Bakavoli, M.; Javid, A.; Khakzad Siuki, M.M.; Moeinpour. F.; Catal. Lett. 149, 713-722, 2019.
[9] Ghadamyari, Z.; Shiri, A.; Khojastehnezhad, A.; Seyedi. S.M.; Appl. Organomet. Chem. 33(9), e5091, 2019.
[10] Ataie, F.; Davoodnia, A.; Khojastehnezhad, A.; Polycycl. Aromat. Comp. 41(4), 781-794, 2021.
[11] Rohaniyan, M.; Davoodnia, A.; Khojastehnezhad, A.; Beyramabadi, S.A.; Eurasian Chem. Commun. 2, 329-339, 2020.
[12] Ghadamyari, Z.; Khojastehnezhad, A.; Seyedi, S.M.; Shiri. A.; ChemistrySelect 4, 10920-10927, 2019.
[13] Khojastehnezhad, A.; Bakavoli, M.; Javid, A.; Khakzad Siuki, M.M.; Shahidzadeh, M.; Res. Chem. Intermed. 45, 4473-4485, 2019.
[14] Hoseini, Z.; Davoodnia, A.; Khojastehnezhad, A.; Pordel. M.; Eurasian Chem. Commun. 2, 398-409, 2020.
[15] DeWitt, S.H.; Czarnik, A.W.; Acc. Chem. Res. 29(3), 114-122, 1996.
[16] Misra, M.; Pandey, S.K.; Pandey, V.P.; Pandey, J.; Tripathi, R.; Tripathi, R.P.; Bioorg. Med. Chem. 17, 625-633, 2009.
[17] Ho, B.; Crider, A.M.; Stables, J.P.; Eur. J. Med. Chem. 36, 265-286, 2001.
[18] Zhou, Y.; Gregor, V.E.; Ayida, B.K.; Winters, G.C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J.M.; Fish, S.; Webber, S.E.; Bioorg. Med. Chem. Lett. 17, 1206-1210, 2007.
[19] Petit, S.; Nallet, J.P.; Guillard, M.; Dreux, J.; Chermat, R.; Poncelet, M.; Bulach, C.; Eur. J. Med. Chem. 26, 19-32, 1991.
[20] Lebold, T.P.; Leduc, A.B.; Kerr, M.A.; Organic Lett. 11, 3770-3772, 2009.
[21] Murty, M.S.R.; Ram, K.R.; Yadav, J.S.; Tetrahedron Lett. 49, 1141-1145, 2008.
[22] Davis, F.A.; Chao, B.; Rao, A.; Org. Lett. 3, 3169-3171, 2001.
[23] Petrović Z.D.; Simijonović D.; Đorović J.; Milovanović V.; Marković Z.; Petrović V.P.; ChemistrySelect. 2, 11187-11194, 2017.
[24] Khan, M.M.; Khan Saigal, S.; Sahoo, S.C.; ChemistrySelect. 3, 1371-1380, 2018.
[25] Mohammadi, S.; Abbasi, M.; Res. Chem. Intermed. 41, 8877-8890, 2015.
[26] Babaei, E.; Mirjalili, B.B.F.; Res. Chem. Intermed. 44, 3493-3505, 2018.
[27] Bamoniri, A.; Mirjalili, B.B.F.; Tarazian, R.; J. Chem. Sci. 127, 885-895, 2015.
[28] Safaei-Ghomi, J.; Ziarati, A.; J. Iran. Chem. Soc. 10, 135-139, 2013.
[29] Maleki, A.; Jafari, A.A.; Yousefi, S.; J. Iran. Chem. Soc. 14, 1801-1813, 2017.
[30] Sobhani-Nasab, A.; Ziarati, A.; Rahimi-Nasrabadi, M.; Res. Chem. Intermed. 43, 6155-6165, 2017.
[31] Wang, H.J.; Mo L, P.; Zhang, Z.H.; ACS Comb. Sci. 13, 181-185, 2011.
[32] Eshghi, H.; Khojastehnezhad, A.; Moeinpour, F.; Rezaeian, S.; Bakavoli, M.; Teymouri, M.; Rostami, A.; Haghbeen, K.; Tetrahedron 71, 436-444, 2015.
[33] Gupta, A.; Kaur, R.; Singh, D.; Kapoor, K.K.; Tetrahedron Lett. 58, 2583-2587, 2017.
[34] Hummers, Jr.; William, S.; Offeman, R.E.; J. Am. Chem. Soc. 80, 1339-1339, 1958.
[35] Raoufi, F.; Monajjemi, M.; Aghaei, H.; Zare, K.; Ghaedi, M.; ChemistrySelect 5, 211-217, 2020.
[36] Khan, A.T.; Khan, M.M.; Bannuru, K.K.R.; Tetrahedron 66, 7762-7772, 2010.
[37] Betancourt-Galindo, R.; Reyes-Rodriguez, P.Y.; Puente-Urbina, B.A.; Avila-Orta, C.A.; Rodríguez-Fernández, O.S.; Cadenas-Pliego, G.; Lira-Saldivar, R.H.; García-Cerda, L.A.; J. Nanomater. 2014, 2014.
[38] Wang, H.J.; Mo, L.P.; Zhang, Z.H.; ACS Comb. Sci. 13, 181-185, 2011.
[39] Eshghi, H.; Khojastehnezhad, A.; Moeinpour, F.; Bakavoli, M.; Seyedi, S.M.; Abbasi, M.; RSC. Adv. 4, 39782-39789, 2014.
[40] Zhou, Q.; Wan, Y.; Zhang, X.; Zhang, L.; Zou, H.; Cui, H.; Zhou, S.l.; Wang, H.; Wu, H; Tetrahedron 71, 7070-7072, 2015.
[41] Mukhopadhyay, C.; Rana, S.; Butcher, R.J.; Schmiedekamp, A.M.; Tetrahedron Lett. 52, 5835-5840, 2011.
[42] Ramachandran, R.; Jayanthi, S.; Jeong, Y.T.; Tetrahedron 68, 363-369, 2012.
[43] Aboonajmi, J.; Mousavi, M.R.; Maghsoodlou, M.T.; Hazeri, N.; Masoumnia, A.; Res. Chem. Intermed. 41, 1925-1934, 2015.
[44] Shaterian, H.R.; Azizi, K.; J. Mol. Liquids 180, 187-191, 2013.
[45] Rahimizadeh, M.; Seyedi, S.M.; Abbasi, M.; Eshghi, H.; Khojastehnezhad, A.; Bakavoli, M.; J. Iran. Chem. Soc. 12, 839-844, 2015.
[46] Brahmachari, G.; Das, S.; Tetrahedron Lett. 53, 1479-1484, 2012.
_||_[1] Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Ruoff, R.S.; Nature, 442, 282-286, 2006.
[2] Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang. D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.; Science 306, 666–669, 2004.
[3] Fan, Y.; Wang, L.; Li, J.; Li, J.; Sun, S.; Chen, F.; Jiang, W.; Carbon 48, 1743-1749, 2010.
[4] Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Van Wees, B.J.; Nature, 448, 571-574, 2007.
[5] Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N.; Nano Lett. 8, 902-907, 2008.
[6] Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.; ACS Nano 4, 4806-4814, 2010.
[7] Keyhaniyan, M.; Shiri, A.; Eshghi, H.; Khojastehnezhad, A.; New J. Chem. 42, 19433-19441, 2018.
[8] Khojastehnezhad, A.; Bakavoli, M.; Javid, A.; Khakzad Siuki, M.M.; Moeinpour. F.; Catal. Lett. 149, 713-722, 2019.
[9] Ghadamyari, Z.; Shiri, A.; Khojastehnezhad, A.; Seyedi. S.M.; Appl. Organomet. Chem. 33(9), e5091, 2019.
[10] Ataie, F.; Davoodnia, A.; Khojastehnezhad, A.; Polycycl. Aromat. Comp. 41(4), 781-794, 2021.
[11] Rohaniyan, M.; Davoodnia, A.; Khojastehnezhad, A.; Beyramabadi, S.A.; Eurasian Chem. Commun. 2, 329-339, 2020.
[12] Ghadamyari, Z.; Khojastehnezhad, A.; Seyedi, S.M.; Shiri. A.; ChemistrySelect 4, 10920-10927, 2019.
[13] Khojastehnezhad, A.; Bakavoli, M.; Javid, A.; Khakzad Siuki, M.M.; Shahidzadeh, M.; Res. Chem. Intermed. 45, 4473-4485, 2019.
[14] Hoseini, Z.; Davoodnia, A.; Khojastehnezhad, A.; Pordel. M.; Eurasian Chem. Commun. 2, 398-409, 2020.
[15] DeWitt, S.H.; Czarnik, A.W.; Acc. Chem. Res. 29(3), 114-122, 1996.
[16] Misra, M.; Pandey, S.K.; Pandey, V.P.; Pandey, J.; Tripathi, R.; Tripathi, R.P.; Bioorg. Med. Chem. 17, 625-633, 2009.
[17] Ho, B.; Crider, A.M.; Stables, J.P.; Eur. J. Med. Chem. 36, 265-286, 2001.
[18] Zhou, Y.; Gregor, V.E.; Ayida, B.K.; Winters, G.C.; Sun, Z.; Murphy, D.; Haley, G.; Bailey, D.; Froelich, J.M.; Fish, S.; Webber, S.E.; Bioorg. Med. Chem. Lett. 17, 1206-1210, 2007.
[19] Petit, S.; Nallet, J.P.; Guillard, M.; Dreux, J.; Chermat, R.; Poncelet, M.; Bulach, C.; Eur. J. Med. Chem. 26, 19-32, 1991.
[20] Lebold, T.P.; Leduc, A.B.; Kerr, M.A.; Organic Lett. 11, 3770-3772, 2009.
[21] Murty, M.S.R.; Ram, K.R.; Yadav, J.S.; Tetrahedron Lett. 49, 1141-1145, 2008.
[22] Davis, F.A.; Chao, B.; Rao, A.; Org. Lett. 3, 3169-3171, 2001.
[23] Petrović Z.D.; Simijonović D.; Đorović J.; Milovanović V.; Marković Z.; Petrović V.P.; ChemistrySelect. 2, 11187-11194, 2017.
[24] Khan, M.M.; Khan Saigal, S.; Sahoo, S.C.; ChemistrySelect. 3, 1371-1380, 2018.
[25] Mohammadi, S.; Abbasi, M.; Res. Chem. Intermed. 41, 8877-8890, 2015.
[26] Babaei, E.; Mirjalili, B.B.F.; Res. Chem. Intermed. 44, 3493-3505, 2018.
[27] Bamoniri, A.; Mirjalili, B.B.F.; Tarazian, R.; J. Chem. Sci. 127, 885-895, 2015.
[28] Safaei-Ghomi, J.; Ziarati, A.; J. Iran. Chem. Soc. 10, 135-139, 2013.
[29] Maleki, A.; Jafari, A.A.; Yousefi, S.; J. Iran. Chem. Soc. 14, 1801-1813, 2017.
[30] Sobhani-Nasab, A.; Ziarati, A.; Rahimi-Nasrabadi, M.; Res. Chem. Intermed. 43, 6155-6165, 2017.
[31] Wang, H.J.; Mo L, P.; Zhang, Z.H.; ACS Comb. Sci. 13, 181-185, 2011.
[32] Eshghi, H.; Khojastehnezhad, A.; Moeinpour, F.; Rezaeian, S.; Bakavoli, M.; Teymouri, M.; Rostami, A.; Haghbeen, K.; Tetrahedron 71, 436-444, 2015.
[33] Gupta, A.; Kaur, R.; Singh, D.; Kapoor, K.K.; Tetrahedron Lett. 58, 2583-2587, 2017.
[34] Hummers, Jr.; William, S.; Offeman, R.E.; J. Am. Chem. Soc. 80, 1339-1339, 1958.
[35] Raoufi, F.; Monajjemi, M.; Aghaei, H.; Zare, K.; Ghaedi, M.; ChemistrySelect 5, 211-217, 2020.
[36] Khan, A.T.; Khan, M.M.; Bannuru, K.K.R.; Tetrahedron 66, 7762-7772, 2010.
[37] Betancourt-Galindo, R.; Reyes-Rodriguez, P.Y.; Puente-Urbina, B.A.; Avila-Orta, C.A.; Rodríguez-Fernández, O.S.; Cadenas-Pliego, G.; Lira-Saldivar, R.H.; García-Cerda, L.A.; J. Nanomater. 2014, 2014.
[38] Wang, H.J.; Mo, L.P.; Zhang, Z.H.; ACS Comb. Sci. 13, 181-185, 2011.
[39] Eshghi, H.; Khojastehnezhad, A.; Moeinpour, F.; Bakavoli, M.; Seyedi, S.M.; Abbasi, M.; RSC. Adv. 4, 39782-39789, 2014.
[40] Zhou, Q.; Wan, Y.; Zhang, X.; Zhang, L.; Zou, H.; Cui, H.; Zhou, S.l.; Wang, H.; Wu, H; Tetrahedron 71, 7070-7072, 2015.
[41] Mukhopadhyay, C.; Rana, S.; Butcher, R.J.; Schmiedekamp, A.M.; Tetrahedron Lett. 52, 5835-5840, 2011.
[42] Ramachandran, R.; Jayanthi, S.; Jeong, Y.T.; Tetrahedron 68, 363-369, 2012.
[43] Aboonajmi, J.; Mousavi, M.R.; Maghsoodlou, M.T.; Hazeri, N.; Masoumnia, A.; Res. Chem. Intermed. 41, 1925-1934, 2015.
[44] Shaterian, H.R.; Azizi, K.; J. Mol. Liquids 180, 187-191, 2013.
[45] Rahimizadeh, M.; Seyedi, S.M.; Abbasi, M.; Eshghi, H.; Khojastehnezhad, A.; Bakavoli, M.; J. Iran. Chem. Soc. 12, 839-844, 2015.
[46] Brahmachari, G.; Das, S.; Tetrahedron Lett. 53, 1479-1484, 2012.