Investigation of lead (II) ion removal from aqueous solutions by (3-aminopropyl) triethoxysilane-modified zeolite
Subject Areas :Hossein Shahriyari Far 1 , Targol Rahimi Masale Nezhad 2 , Mahdi Hasanzadeh 3 , Mahboubeh Rabbani 4
1 - Iran University of Science and Technology
2 - Iran University of Science and Technology
3 - Yazd University
4 - Assistant professor, Department of Chemistry, Iran University of Science and Technology
Keywords: Lead, Adsorption Isotherm, adsorption kinetic, Adsorption capacity, Modified zeolite,
Abstract :
In this study, functionalized zeolite (Zeolite-APTES) has been used to remove lead ions in an aqueous environment. Zeolites have received much attention due to their ion exchange capacity and chemical and mechanical stability. Parameters influencing the lead ion adsorption process, including adsorbent content (mg), initial concentration (ppm), pH, and time (min) were investigated and optimized using an experimental design by response surface methodology ( RSM ) approach. The results show that the lead adsorption efficiency from aqueous solution increases with increasing time and the adsorbent content and gradually reaches a constant value. The percentage of lead removal also decreases with an increasing initial concentration of lead ions. Functionalized zeolite has shown good adsorption capacity for the lead. The maximum adsorption capacity was found to be 89.28 mg.g-1. Furthermore, the adsorption follows a Langmuir isotherm and pseudo-first-order kinetic model. The developed composite exhibits great potential for heavy metal adsorption and wastewater treatment.
[1] Naiya, T.K.; Bhattacharya, A.K.; Das, S.K.; J. Colloid Interface Sci. 333, 14–26, 2009.
[2] Huang, G.; Wang, D.; Ma, S.; Chen, J.; Jiang, L.; Wang, P.; J. Colloid Interface Sci. 445, 294–302, 2016.
[3] Saleh, T. A; Desalin. Water Treat. 57, 10730–10744, 2016.
[4] Hao, L.; Song, H.; Zhang, L.; Wan, X.; Tang, Y.; Lv, Y.; J. Colloid Interface Sci. 369, 381–387, 2012.
[5] Motsi, T.; Rowson, N.A.; Simmons, M.J.H.; Int. J. Miner. Process. 92, 42–48, 2009.
[6] Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R.; Chem. Eng. J. 359, 359-363, 2019.
[7] Hou, L.; Hu, B.X.; He, M.; Xu, X.; Zhang, W.; Environ. Sci. Pollut. Res. 25, 9615–9625, 2018.
[8] Erdem, E.; Karapinar, N.; Donat, R.; J. Colloid Interface Sci. 280, 309–314, 2014.
[9] Khachatryan, S.V.; Chem. Biol. 2, 31–35, 2014.
[10] Javanmardi, P.; Takdastan, A.; Jalilzadeh Yengejeh, R.; Journal of Water and Wastewater, 29(1), 108-114, 2018.
[11] Ok, Y.S.; Yang, J.E.; Zhang, Y.S.; Kim, S.J.; Chung, D.Y.; J. Hazard. Mater. 147, 91–96, 2007.
[12] Mortazavi, B.; Rasuli, L.; Kazemian, H.; Iranian Journal of Health and Environment, 3(1) 37-46, 2010.
[13] Irannajad, M.; Soleimanpour, M.; Kamran Haghighi, H.; Journal of Advanced processes in Materials Engineering, 13(1), 1-11, 2019.
[14] Kazemi, A.; Bahramifar, N.; Heydari, A; Journal of Environmental Sciences and Technology, 22(5), 391-401, 2020.
[15] Gutierrez Moreno, J.J.; Pan, K.; Wang, Y.; Li, W.; Langmuir 36(20), 5680-5689, 2020.
[16] Poursaberi, T.; Hassanisadi, M.; Rezapour, M.; Torkestani, K.; Journal of Applied Research in Chemistry, 6(1), 5-14, 2012.
[17] Liu, L.; Jin, S.; Ko, K.; Kim, H.; Ahn, I.S.; Lee, C.H.; Chem. Eng. J. 382, 122-834, 2019.
[18] Mozgawa. W.; J. Mol. Struct. 555, 299–304, 2000.
[19] Mohammadi, N.; Mousazadeh, B.; Hamoule, T.; Environment, Development and Sustainability. 23(2), 1688–1705, 2021.
[20] Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W.; J. Hazard. Mater. 278, 211–220, 2014.
[21] Zhao, J.; Wang, C.; Wang, S.; Zhou, Y.; J. Ind. Eng. Chem. 83, 111–122, 2020.
[22] Yang, G.; Tang, L.; Lei, X.; Zeng, G.; Cai, Y.; Wei, X.; Zhou, Y.; Li, S.; Fang, Y.; Zhang, Y.; Appl. Surf. Sci. 292, 710–716, 2014.
[23] Samadani Langeroodi, N.; Tahery, F.; Mehrani, S.; Nova Biologica Reperta. 2(3): 166-175, 2015.
[24] Shen, J.; Wang, N.; Wang, Y.G.; Yu, D.; Ouyang, X.K.; Polymers (Basel) 10(12), 1382(1-16), 2018.
[25] Akinola, L.K.; Ibrahim, A.; Chadi, A.S.; J. Pure Appl. Sci. 2, 79–88, 2016.
[26] Mane, V.S.; and Babu, P.V.; J. Taiwan Inst. Chem. Eng. 44, 81–88, 2013.
[27] Wanyonyi, W.C.; Onyari, J.M.; Shiundu, P.M.; Energy Procedia, 50, 862–869, 2014.
[28] Neupane, S.; Ramesh, S.T.; Gandhimathi, R; Nidheesh, P.V.; Desalin. Water Treat. 54, 2041–2054, 2015.
[29] Kakavandi, B.; Kalantary, R.R.; Jafari, A.J.; Nasseri, S.; Ameri, A.; Esrafili, A.; Azari, A.; Clean - Soil, Air, Water, 43, 1157–1166, 2015.
[30] Tokalıoğlu, Ş.; Yavuz, E.; Demir, S.; Patat, Ş.; Food Chem. 237, 707–715, 2017.
[31] Tian, Y.; Gao, B.; Morales, V.L.; Wu, L.; Wang, Y.; Muñoz-Carpena, R.; Cao, C.; Huang, Q.; Yang, L.; Chem. Eng. J. 210 557–563, 2012.
[32] Xu, Q.; Wang, Y.; Jin, L.; Wang, Y.; Qin, M.; J. Hazard. Mater. 33, 91–99, 2017.
[33] Sarı, A.; Tuzen, M.; Cıtak, D.; Soylak, M.; J. Hazard. Mater. 148, 387–394, 2007.
[34] Sarı, A.; Tuzen, M.; Cıtak, D.; Soylak, M.; J. Hazard. Mater. 149, 283–291, 2007.
_||_
[1] Naiya, T.K.; Bhattacharya, A.K.; Das, S.K.; J. Colloid Interface Sci. 333, 14–26, 2009.
[2] Huang, G.; Wang, D.; Ma, S.; Chen, J.; Jiang, L.; Wang, P.; J. Colloid Interface Sci. 445, 294–302, 2016.
[3] Saleh, T. A; Desalin. Water Treat. 57, 10730–10744, 2016.
[4] Hao, L.; Song, H.; Zhang, L.; Wan, X.; Tang, Y.; Lv, Y.; J. Colloid Interface Sci. 369, 381–387, 2012.
[5] Motsi, T.; Rowson, N.A.; Simmons, M.J.H.; Int. J. Miner. Process. 92, 42–48, 2009.
[6] Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R.; Chem. Eng. J. 359, 359-363, 2019.
[7] Hou, L.; Hu, B.X.; He, M.; Xu, X.; Zhang, W.; Environ. Sci. Pollut. Res. 25, 9615–9625, 2018.
[8] Erdem, E.; Karapinar, N.; Donat, R.; J. Colloid Interface Sci. 280, 309–314, 2014.
[9] Khachatryan, S.V.; Chem. Biol. 2, 31–35, 2014.
[10] Javanmardi, P.; Takdastan, A.; Jalilzadeh Yengejeh, R.; Journal of Water and Wastewater, 29(1), 108-114, 2018.
[11] Ok, Y.S.; Yang, J.E.; Zhang, Y.S.; Kim, S.J.; Chung, D.Y.; J. Hazard. Mater. 147, 91–96, 2007.
[12] Mortazavi, B.; Rasuli, L.; Kazemian, H.; Iranian Journal of Health and Environment, 3(1) 37-46, 2010.
[13] Irannajad, M.; Soleimanpour, M.; Kamran Haghighi, H.; Journal of Advanced processes in Materials Engineering, 13(1), 1-11, 2019.
[14] Kazemi, A.; Bahramifar, N.; Heydari, A; Journal of Environmental Sciences and Technology, 22(5), 391-401, 2020.
[15] Gutierrez Moreno, J.J.; Pan, K.; Wang, Y.; Li, W.; Langmuir 36(20), 5680-5689, 2020.
[16] Poursaberi, T.; Hassanisadi, M.; Rezapour, M.; Torkestani, K.; Journal of Applied Research in Chemistry, 6(1), 5-14, 2012.
[17] Liu, L.; Jin, S.; Ko, K.; Kim, H.; Ahn, I.S.; Lee, C.H.; Chem. Eng. J. 382, 122-834, 2019.
[18] Mozgawa. W.; J. Mol. Struct. 555, 299–304, 2000.
[19] Mohammadi, N.; Mousazadeh, B.; Hamoule, T.; Environment, Development and Sustainability. 23(2), 1688–1705, 2021.
[20] Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W.; J. Hazard. Mater. 278, 211–220, 2014.
[21] Zhao, J.; Wang, C.; Wang, S.; Zhou, Y.; J. Ind. Eng. Chem. 83, 111–122, 2020.
[22] Yang, G.; Tang, L.; Lei, X.; Zeng, G.; Cai, Y.; Wei, X.; Zhou, Y.; Li, S.; Fang, Y.; Zhang, Y.; Appl. Surf. Sci. 292, 710–716, 2014.
[23] Samadani Langeroodi, N.; Tahery, F.; Mehrani, S.; Nova Biologica Reperta. 2(3): 166-175, 2015.
[24] Shen, J.; Wang, N.; Wang, Y.G.; Yu, D.; Ouyang, X.K.; Polymers (Basel) 10(12), 1382(1-16), 2018.
[25] Akinola, L.K.; Ibrahim, A.; Chadi, A.S.; J. Pure Appl. Sci. 2, 79–88, 2016.
[26] Mane, V.S.; and Babu, P.V.; J. Taiwan Inst. Chem. Eng. 44, 81–88, 2013.
[27] Wanyonyi, W.C.; Onyari, J.M.; Shiundu, P.M.; Energy Procedia, 50, 862–869, 2014.
[28] Neupane, S.; Ramesh, S.T.; Gandhimathi, R; Nidheesh, P.V.; Desalin. Water Treat. 54, 2041–2054, 2015.
[29] Kakavandi, B.; Kalantary, R.R.; Jafari, A.J.; Nasseri, S.; Ameri, A.; Esrafili, A.; Azari, A.; Clean - Soil, Air, Water, 43, 1157–1166, 2015.
[30] Tokalıoğlu, Ş.; Yavuz, E.; Demir, S.; Patat, Ş.; Food Chem. 237, 707–715, 2017.
[31] Tian, Y.; Gao, B.; Morales, V.L.; Wu, L.; Wang, Y.; Muñoz-Carpena, R.; Cao, C.; Huang, Q.; Yang, L.; Chem. Eng. J. 210 557–563, 2012.
[32] Xu, Q.; Wang, Y.; Jin, L.; Wang, Y.; Qin, M.; J. Hazard. Mater. 33, 91–99, 2017.
[33] Sarı, A.; Tuzen, M.; Cıtak, D.; Soylak, M.; J. Hazard. Mater. 148, 387–394, 2007.
[34] Sarı, A.; Tuzen, M.; Cıtak, D.; Soylak, M.; J. Hazard. Mater. 149, 283–291, 2007.