Comparative study on the effect of natural rubber protein content obtained by two Kjeldahl and Fourier transform infrared spectroscopy (FTIR) methods on the tensile properties of natural rubber based compound
Subject Areas :Masoomeh Sadeghi 1 , Mercedeh Malekzadeh 2 * , saeed taghvaei 3 , Fereshteh Motiee 4
1 - Chemistry Department Tehran North Branch Islamic Azad University Tehran Iran
2 - Chemistry Department, Tehran North Branch, Islamic Azad University, Tehran, Iran
3 - Islamic azad university, North Tehran Branch
4 - Chemistry Faculty, Tehran North Branch, Islamic Azad University
Keywords: Tensile Properties, Protein content, Natural rubber, Kjeldahl method, Fourier transform infrared spectroscopy (FTIR),
Abstract :
Protein is one of the non elastomeric constituents in natural rubber that has important effects on its properties. In this work, a comparative study on the effect of the natural rubber protein content that was obtained by two Kjeldahl and Fourier transform infrared spectroscopy methods considered on the tensile properties of rubber compounds and second order correlation models were obtained. These models were used to predict the tensile properties of natural rubber based compounds. The results showed that the Fourier transform infrared spectroscopy method is more successful for prediction of the properties. Tensile strength and modulus 100% were predicted by less than 10% error, elongation at break and modulus 300% were also estimated by less than 25% error. This new approach makes it possible to predict the tensile properties of rubber compounds before preparing,, by consuming a small amount of natural rubber and using a fast and non destructive technique.
[1] Pinizzotto, S.; Multi-year expert meeting on commodities and development, Geneva, Switzerland, 8-9 February 2021.
[2] Kampan, P.; Asian Soc. Sci. 14(1), 169-182, 2018.
[3] Venkatachalam, P.; Geetha, N.; Sangeetha, P.; Thulaseedharan, A.; Afr. J. Biotechnol. 12 (12), 1297-1310, 2013.
[4] Claramma, N.M.; PhD Thesis, The Cochin University of Science and Technology. Kottayam, India, 1997.
[5] Mark, J.E.; Erman, B.; Eirich, F.R.; "The science and technology of rubber", 3rd ed., Elsevier Academic Press, United States of America, 2005.
[6] Roslim, R.; Hashim, M.Y.A.; Augurio. P.T.; J. Eng. Sci. 8, 15–27, 2012.
[7] Berthelot, K.; Peruch, F.; Lecomte, S.; Biochimie. 1-35, 2016.
[8] Kongkaew, C.; Intiya, W.; Loykulnant, S.; Sae-oui, P.; Pruffen und Messen Testing and Measuring KGK, 37–41, 2017.
[9] Zhou, Y.; Kosugi, K.; Yamamoto, Y.; Kawahara, S.; Polym. Adv. Technol. 28, 159-165, 2017.
[10] Sarkawi, S.S; Dierkes, W.K.; Noordermeer, J.W.M.; Eur. Polym. J. 49, 3199–209, 2013.
[11] Morton, M.; "Rubber Technology", 3rd ed., Kluwer Academic Publisher, Netherlands, 1999.
[12] Smitthipong, W.; Tantatherdtam, R.; Rungsanthie, K.; Suwanruji, K.; Sriroth, K.; Radabutra, S.; Thanawan, S.; Vallet, M.; Nardin, M.; Mougin, K.; Chollakup, R.; Adv. Matter. Res. 844, 345-348, 2014.
[13] Maznah, K.S.; Baharin, A.; Hanafi, I.; Polym. Test. 27, 823-826, 2008.
[14] Hofmann, W.; "Rubber technology handbook", Carl Hanser Verlag; Germany; 1989.
[15] Lhamo, D.; McMahan, C.; Rubber Chem. Technol. 90, 387-404, 2017.
[16] Tuampoemsab, S.; Sakdapipanich, J.; KGK-Kaut. Gummi. 12, 678-684, 2007.
[17] Montha, S.; Suwandittakul, P.; Poonsrisawat, A.; Oungeun, P.; Kongkaew, C.; Adv. Mater. Sci. Eng. 5, 1-6, 2016.
[18] Vasudevan, D.; Vaidyanathan, K.; “Textbook of Biochemistry”, Jaypee Brothers Medical Pub., India, 2016.
[19] ASTM D 3533-05, “Annual Book of ASTM Standards”, ASTM International, USA, 2005.
[20] ISO 1656, “ISO international standards”, Switzerland, 2014.
[21] Qi, N.L.; Li, P.W.; Zeng, X.H.; Huang, H.H.; Yang, Z.M.; Gong, X.; Adv. Matter. Res. 815, 722–726, 2013.
[22] Loadman, M.J.R.; “Analysis of Rubber and Rubber-like Polymers”, 4th ed., Kluwer Academic Publishers, Netherlands, 1998.
[23] Kalapat, N.; Watthanachote, L.; Nipithakul, T.; Kasetsart J. Nat. Sci. 43, 319–325, 2009.
[24] ASTM D 5712-15. “Annual Book of ASTM Standards”, ASTM International, USA, 2020.
[25] Tomazic-Jezie, V.J.; Lucas, A.D.; Lamanna, A.; Stratmeyer, M.E.; Toxicol. Methods. 9, 153–164, 1999.
[26] Rolere, S.; Liengprayoon, S.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F.; Polym. Test. 43, 83–93, 2015.
[27] Xu, L.; Huang, C.; Luo, M.; Qu, W.; Liu, H.; Gu, Z.; Jing. L.; Huang, G.; Zheng, J.; RSC Adv. 5, 91742-91750, 2015.
[28] Colom, X.; Anwar, F.; Formela, J.; Canavate, J.; Polym. Test. 52, 200–208, 2016.
[29] Wei, Y.; Zhang, H.; Wu, L.; Jin, L.; Liao, S.; MOJ. Polym. Sci. 1, 197–199, 2017.
[30] DeButts, B.L.; Hanzly, L.E.; Barone, J.R.; J. Appl. Polym. Sci. 135, 46026 (1-10), 2018.
[31] Manaila, E.; Stelescu, M.D.; Gabriela, C.; Int. J. Mol. Sci. 19, 2862–2880, 2018.
[32] Grange, J.; Ph.D. Thesis, Universite de Bordeaux, Bordeaux, France, 2018.
[33] Sadeghi, M.; Malekzadeh, M.; Taghvaei-Ganjali, S.; Motiee, F.; J. Indian Chem. Soc. 98, 1-12, 2021.
[34] Huang, C.; Zhang, J.; Cai, X.; Huang, G.; Wu, J.; J. Polym. Res. 27(158), 2–11, 2020.
[35] Whitford, D.; "Proteins: Structure and Function", John Wiley & sons Ltd., UK, 2005.
[36] Motiee, F.; Taghvaei-Ganjali, S.; Malekzadeh, M.; Int. J. Ind. Chem. 4, 16-22, 2013.
_||_