Comparative study on the effect of natural rubber protein content obtained by two Kjeldahl and Fourier transform infrared spectroscopy (FTIR) methods on the tensile properties of natural rubber based compound
Subject Areas :Masoomeh Sadeghi 1 , Mercedeh Malekzadeh 2 * , saeed taghvaei 3 , Fereshteh Motiee 4
1 - Chemistry Department Tehran North Branch Islamic Azad University Tehran Iran
2 - Chemistry Department, Tehran North Branch, Islamic Azad University, Tehran, Iran
3 - Islamic azad university, North Tehran Branch
4 - Chemistry Faculty, Tehran North Branch, Islamic Azad University
Keywords: Tensile Properties, Protein content, Natural rubber, Kjeldahl method, Fourier transform infrared spectroscopy (FTIR),
Abstract :
Protein is one of the non elastomeric constituents in natural rubber that has important effects on its properties. In this work, a comparative study on the effect of the natural rubber protein content that was obtained by two Kjeldahl and Fourier transform infrared spectroscopy methods considered on the tensile properties of rubber compounds and second order correlation models were obtained. These models were used to predict the tensile properties of natural rubber based compounds. The results showed that the Fourier transform infrared spectroscopy method is more successful for prediction of the properties. Tensile strength and modulus 100% were predicted by less than 10% error, elongation at break and modulus 300% were also estimated by less than 25% error. This new approach makes it possible to predict the tensile properties of rubber compounds before preparing,, by consuming a small amount of natural rubber and using a fast and non destructive technique.
[1] Pinizzotto S. Natural rubber economy: A
strategic approach. Paper presented at: MultiYear Expert Meeting on Commodities and
Development; 2021 Feb 8-9; Geneva,
Switzerland.
[2] Kampan P. Sustainability and competitiveness
of Thailand's natural rubber industry in times
of global economic flux. Asian Soc Sci.
2018;14(1):169-82. doi: 10.5539/ass.v14n1p
169
[3] Venkatachalam P, Geetha N, Sangeetha P,
Thulaseedharan A. Natural rubber producing
plants: An overview. Afr J Biotechnol.
ملك زاده و همكاران
نشريه پژوهشهاي كاربردي در شيمي (JARC (سال هفدهم، شماره ،2 تابستان 1402
36
2013;12(12):1297-310. doi: 10.5897/AJBX12.
016
[4] Claramma NM. Studies on prevulcanization of
rubber latex with special reference to influence
of storage and after treatments on properties of
films [Ph.D Thesis]. [India]: The Cochin
University of Science and Technology; 1997.
227p.
[5] Mark JE, Erman B, Eirich FR. The science and
technology of rubber. 3rd ed. Massachusetts:
Elsevier Academic Press; 2005.
[6] Roslim R, Hashim MYA, Augurio PT. Natural
latex foam. J Eng Sci. 2012;8:15–27.
[7] Berthelot K, Peruch F, Lecomte S. Highlights
on Hevea brasiliensis (pro) hevein proteins.
Biochimie. 2016;127:258-70. doi: 10.1016/j.
biochi.2016.06.006
[8] Kongkaew C, Intiya W, Loykulnant S. Sae-oui
P. Effect of protein crosslinking by Maillard
reaction on natural rubber properties. Pruffen
und Messen Testing and Measuring KGK.
2017;5:37–41.
[9] Zhou Y, Kosugi K, Yamamoto Y, Kawahara S.
Effect of non-rubber components on the
mechanical properties of natural rubber. Polym
Adv Technol. 2017;28(2):159-65. doi: 10.10
02/pat.3870
[10] Sarkawi SS, Dierkes WK, Noordermeer JWM.
The influence of non-rubber constituents on
performance of silica reinforced natural rubber
compounds. Eur Polym J. 2013;49:3199–209.
doi: 10.1016/j.eurpolymj.2013.06.022
[11] Morton M. Rubber technology. 3rd ed. Berlin:
Springer; 1999.
[12] Smitthipong W, Tantatherdtam R, Rungsanthie
K, Suwanruji K, Sriroth K, Radabutra S,
Thanawan S, Vallet M, Nardin M, Mougin K,
Chollakup R. Effect of non-rubber components
on properties of sulphur crosslinked natural
rubbers. Adv Matter Res. 2013;844:345-48.
doi:10.4028/www.scientific.net/AMR.844.345
[13] Maznah KS, Baharin A, Hanafi I. Effect of
acid treatment on extractable protein content,
crosslink density and tensile properties of
natural rubber latex film. Polym Test.
2008;27(7):823-26. doi: 10.1016/j.polymerte
sting.2008.06.004
[14] Hofmann W. Rubber technology handbook.
Munich: Carl Hanser Verlag; 1989.
[15] Lhamo D, McMahan C. Effect of>_|. Panahirad S, Dadpour M, Peighambardoust SH,
Soltanzadeh M, Gullón B, Alirezalu K, et al.
Applications of carboxymethyl cellulose-and
pectin-based active edible coatings in
preservation of fruits and vegetables: A review.
Trends in Food Science & Technology.
2021;110:663-73. doi: org/10.1016/j.tifs.202
1.02.025
2. Wang W, Deng X, Liu D, Luo F, Cheng H, Cao
T, et al. Broadband radar-absorbing performance
of square-hole structure. Advanced Composites
and Hybrid Materials. 2022;5:525-535. doi:
org/10.1007/s42114-021-00376-0
3. Tavassoli-Kafrani E, Shekarchizadeh H,
Masoudpour-Behabadi M. Development of edible
films and coatings from alginates and
carrageenans. Carbohydrate Polymers.
2016;137:360-74. doi: org/10.1016/j.carbpol.
2015.10.074
4. Tesfay SZ, Magwaza LS, Mbili N, Mditshwa A.
Carboxyl methylcellulose (CMC) containing
moringa plant extracts as new postharvest
organic edible coating for Avocado (Persea
americana Mill.) fruit. Scientia Horticulturae.
2017;226:201-7. doi: org/10.1016/j.scienta.
2017.08.047
5. Dashipour A, Khaksar R, Hosseini H, ShojaeeAliabadi S, Ghanati K. Physical, antioxidant
and antimicrobial characteristics of
carboxymethyl cellulose edible film cooperated
with clove essential oil. Zahedan Journal of
research in medical Sciences. 2014;16(8):34-42.
6. Yildirim-Yalcin M, Tornuk F, Toker OS. Recent
advances in the improvement of carboxymethyl
cellulose-based edible films. Trends in Food
Science & Technology. 2022;129:179-193. doi:
org/10.1016/j.tifs.2022.09.022
7. Yaradoddi JS, Banapurmath NR, Ganachari SV,
Soudagar MEM, Mubarak N, Hallad S, et al.
Biodegradable carboxymethyl cellulose based
material for sustainable packaging application.
Scientific Reports. 2020;10(1):1-13. doi:org
/10.1038/s41598-020-78912-z
8. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR,
Sahari J. Effect of plasticizer type and
concentration on physical properties of
biodegradable films based on sugar palm
(Arenga pinnata) starch for food packaging.
Journal of Food Science and Technology.
2016;53:326-36. doi: org/10.1007/s13197-015-
2009-7
9. Morozkina S, Strekalovskaya U, Vanina A,
Snetkov P, Krasichkov A, Polyakova V, et al.
The Fabrication of alginate–carboxymethyl
cellulose-based composites and drug releaseprofiles. Polymers. 2022;14(17):3604. doi:
org/10.3390/polym14173604
10. Chan L, Jin Y, Heng P. Cross-linking
mechanisms of calcium and zinc in production
of alginate microspheres. International journal
of pharmaceutics. 2002;242(1-2):255-8. doi:
org/10.1016/S0378-5173(02)00169-2
11. Cheng L, Abd Karim A, Seow C.
Characterisation of composite films made of
konjac glucomannan (KGM), carboxymethyl
cellulose (CMC) and lipid. Food Chemistry.
2008;107(1):411-8. doi: org/10.1016/j.food
chem.2007.08.068
12. Basavegowda N, Baek K-H. Synergistic
antioxidant and antibacterial advantages of
essential oils for food packaging applications.
Biomolecules. 2021;11(9):1267. doi: org/10.
3390/biom11091267
13. Muppalla SR, Kanatt SR, Chawla S, Sharma A.
Carboxymethyl cellulose–polyvinyl alcohol
films with clove oil for active packaging of
ground chicken meat. Food Packaging and
Shelf Life. 2014;2(2):51-8. doi: org/10.1016/j.
fpsl.2014.07.002
14. Nadeem H, Naseri M, Shanmugam K,
Dehghani M, Browne C, Miri S, et al. An
energy efficient production of high moisture
barrier nanocellulose/carboxymethyl cellulose
films via spray-deposition technique.
Carbohydrate Polymers. 2020;250:116911.
doi: org/10.1016/j.carbpol.2020.116911
15. Cao L, Ge T, Meng F, Xu S, Li J, Wang L. An
edible oil packaging film with improved
barrier properties and heat sealability from
cassia gum incorporating carboxylated
cellulose nano crystal whisker. Food
Hydrocolloids. 2020;98:105251. doi: org/10.
1016/j.foodhyd.2019.105251
16. Dashipour A, Razavilar V, Hosseini H,
Shojaee-Aliabadi S, German JB, Ghanati K, et
al. Antioxidant and antimicrobial
carboxymethyl cellulose films containing
Zataria multiflora essential oil. International
Journal of Biological Macromolecules.
2015;72:606-13. doi: org/10.1016/j.ijbiomac.
2014.09.006
17. Noshirvani N, Ghanbarzadeh B, Gardrat C,
Rezaei MR, Hashemi M, Le Coz C, et al.
Cinnamon and ginger essential oils to improve
antifungal, physical and mechanical properties
of chitosan-carboxymethyl cellulose films.
Food Hydrocolloids. 2017;70:36-45. doi:
org/10.1016/j.foodhyd.2017.03.015
18. Jannatyha N, Shojaee-Aliabadi S, Moslehishad
M, Moradi E. Comparing mechanical, barrier
and antimicrobial properties of
nanocellulose/CMC and nanochitosan/CMC
composite films. International Journal of
Biological Macromolecules. 2020;164:2323-8.
doi: org/10.1016/j.ijbiomac.2020.07.249
19. Michelin M, Marques AM, Pastrana LM,
Teixeira JA, Cerqueira MA. Carboxymethyl
cellulose-based films: Effect of organosolv
lignin incorporation on physicochemical and
antioxidant properties. Journal of Food
Engineering. 2020;285:110107. doi: org/10.
1016/j.jfoodeng.2020.110107
20. Kanatt SR, Makwana SH. Development of active,
water-resistant carboxymethyl cellulose-poly
vinyl alcohol-Aloe vera packaging film.
Carbohydrate polymers. 2020;227:115303. doi:
org/10.1016/j.carbpol.2019.115303
21. Park CH, Yeo HJ, Baskar TB, Park YE, Park
JS, Lee SY, et al. In vitro antioxidant and
antimicrobial properties of flower, leaf, and
stem extracts of Korean mint. Antioxidants.
2019;8(3):75. doi: org/10.3390/antiox80300|_