Effect of quartz filler with fluoride-containing barium aluminosilicate on the mechanical properties of light-cured dental composites based on Bis-GMA/UDMA/TEGDMA
Subject Areas :babak akbari 1 , Sahar Vahedi 2 , Maryam Jamshidi 3 , Farhood Najafi 4
1 - استادیار گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران
2 - Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran
3 - Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran
4 - Department of Resin and Additives, Surface Coating and Novel Technologies Faculty, Institute for Color Science and Technology
Keywords: Quartz, Dental composite, fluoride-containing barium aluminosilicate, light-cured,
Abstract :
: In this project, a dental composite has been prepared using Bis-GMA, UDMA, and TEGDMA resins along with quartz and barium aluminosilicate fillers containing fluoride. After the fabrication stage, FTIR tests were performed to study the surface modification of fillers, UTM to determine the flexural strength and stiffness test. Then, SEM images were obtained from the fracture surfaces of the bending test. The results of the UTM test were about 23% higher than the standard level of ISO4049 (93MPa) and the hardness test result was 84.4 HV, which is in the acceptable range for dental composites. FTIR peaks related to quartz and barium silicate glass systems showed the success of the silanization process in these two systems. In general, it seems that the composition prepared in this study can meet the requirements of a dental composite. However, further studies need to be carried out.
[1] Sakaguchi, R.L.; Ferracane, J.; Powers, J.M.; “Craig’s Restorative Dental materials”, 14th Ed., Elsevier, Amsterdam, 2019.
[2] Nowak, R., Wanek, E.; Gangnus, B.; U.S. Patent 5824720 A, 1998.
[3] Hammesfahr, P.D.; Danielson, P.S.; Campbell, R.C.; U.S. Patent 5304586 A, 1994.
[4] Barszczewska-Rybarek, I.M.; Chrószcz, M.W.; Chladek, G.; Materials 14(8), 2037-2045, 2021.
[5] Zhang, S.; Liao, M.; Liu, F.; Huang. X.; Mai, S.; He, J.; J. Mech. Behav. Biomed. Mater. 131, 105263, 2022.
[6] Tarle, Z.; Meniga, A.; Ristic, M.; Sutalo, J; Pichler, G.; Croat. Chem. Acta. 71(3), 777-787, 1998.
[7] Glenn, J.F.; “Composites and properties of unfilled and composite resin restorative materials”, Edited by Smith, D.C. ; Williams, D.F.; CRS Press Inc, Boca Raton, 3, 98-130, 1982.
[8] Najafi, H.; Akbari, B.; Najafi, F.; Abrishamkar, A.; Ramedani, A.; Yazdanpanah, A.; Int. J. Polym. Mater. Polym. Biomater. 66(16), 844-851, 2017.
[9] Sarhaadei, E.; Najafi, F.; Akbari, B.; Polym. Bull, 79, 8193-8215, 2022.
[9] Kolodziejczak-Radzmiska, A.; Jesionowski, T.; Materials 7, 2833 – 2881, 2014.
[10] Karabela, M.M.; Sideridou, I.D.; Dent. Mater. 27, 825-835, 2011.
[11] Schneider, L.F.; Cavalcante, L.M.; Prahl, S.A.; Pfeifer, C.S; Ferracane, Dent. Mater. 28(4), 392-397, 2012.
[12] Saikia, B.J.; Parthasarathy, G.; J. Mod. Phys. 1, 206-210, 2010.
[13] Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R.; “Introduction to spectroscopy”, 5th Ed., CENGAGE Learning, Australia, 2009.
[14] International Standard, ISO 4049, Dentistry – Polymer – based restorative materials.
[15] Poggio, C.; Lombarlini, M.; Gaviati, S.; Chiesa, M.; J. Conserv. Dent. 15(3), 237-241, 2012.
_||_[1] Sakaguchi, R.L.; Ferracane, J.; Powers, J.M.; “Craig’s Restorative Dental materials”, 14th Ed., Elsevier, Amsterdam, 2019.
[2] Nowak, R., Wanek, E.; Gangnus, B.; U.S. Patent 5824720 A, 1998.
[3] Hammesfahr, P.D.; Danielson, P.S.; Campbell, R.C.; U.S. Patent 5304586 A, 1994.
[4] Barszczewska-Rybarek, I.M.; Chrószcz, M.W.; Chladek, G.; Materials 14(8), 2037-2045, 2021.
[5] Zhang, S.; Liao, M.; Liu, F.; Huang. X.; Mai, S.; He, J.; J. Mech. Behav. Biomed. Mater. 131, 105263, 2022.
[6] Tarle, Z.; Meniga, A.; Ristic, M.; Sutalo, J; Pichler, G.; Croat. Chem. Acta. 71(3), 777-787, 1998.
[7] Glenn, J.F.; “Composites and properties of unfilled and composite resin restorative materials”, Edited by Smith, D.C. ; Williams, D.F.; CRS Press Inc, Boca Raton, 3, 98-130, 1982.
[8] Najafi, H.; Akbari, B.; Najafi, F.; Abrishamkar, A.; Ramedani, A.; Yazdanpanah, A.; Int. J. Polym. Mater. Polym. Biomater. 66(16), 844-851, 2017.
[9] Sarhaadei, E.; Najafi, F.; Akbari, B.; Polym. Bull, 79, 8193-8215, 2022.
[9] Kolodziejczak-Radzmiska, A.; Jesionowski, T.; Materials 7, 2833 – 2881, 2014.
[10] Karabela, M.M.; Sideridou, I.D.; Dent. Mater. 27, 825-835, 2011.
[11] Schneider, L.F.; Cavalcante, L.M.; Prahl, S.A.; Pfeifer, C.S; Ferracane, Dent. Mater. 28(4), 392-397, 2012.
[12] Saikia, B.J.; Parthasarathy, G.; J. Mod. Phys. 1, 206-210, 2010.
[13] Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R.; “Introduction to spectroscopy”, 5th Ed., CENGAGE Learning, Australia, 2009.
[14] International Standard, ISO 4049, Dentistry – Polymer – based restorative materials.
[15] Poggio, C.; Lombarlini, M.; Gaviati, S.; Chiesa, M.; J. Conserv. Dent. 15(3), 237-241, 2012.