Heat Treatment of Graphene Oxide/Thiourea Mixture in the Solid State and Application for Detection of Uric acid and pH Sensing
Subject Areas : PolymerJavad Gholami 1 * , Nastaran Jalili 2
1 - Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer
2 - Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer
Keywords:
Abstract :
The heat treatment of the graphene oxide/ thiourea mixture was done by the tube furnace equippedwith an argon inlet. The graphene oxide/ thiourea sample was characterized by UV–visiblespectrometry, Thermogravimetric analysis, Fourier transform infrared spectroscopy and X-rayphotoelectron spectroscopy. The UV–vis absorption spectra of graphene oxide was shown thecharacteristic absorbance of graphene oxide, and the Fourier transform infrared spectra showedcarboxylic acid group and thiocyanate on the surface of graphene oxide/thiourea. Thedeconvolution of X-ray photoelectron spectra showed the sulfur and nitrogen on the surface ofgraphene oxide. The peak area, the percent of carbon, oxygen, nitrogen, and sulfur of modifiedgraphene oxide based on Scofield’s relative sensitivity factor (RSF), was 73, 16, 7, and 4,respectively. The fluorescence measurements of the modified graphene oxide suspension in thedifferent pH were investigated. The alkaline solution showed the most emission intensity. Thesample was shown good interaction with uric acid in the alkaline solution compared to othersubstances, including thiamin, nicotinamide, urea, ascorbic acid, glucose, and lauric acid, based onfluorescence spectroscopy.
[1]. Y. Tian, Z. Yu, L. Cao, X. L. Zhang, C. Sun, D. W. Wang, J. Energy Chem., 55, 323 (2021).
[2]. V, Agarwal, P. B. Zetterlund, Chem. Eng. J., 405, 127018 (2021).
[3]. S. Karmakar, T. K. Das, S. Kundu, S. Maiti, A. Saha, J. Indian Chem. Soc., 98, 100069 (2021).
[4]. O. Akhavan, Carbon., 49, 11 (2011).
[5]. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).
[6]. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1957).
[7]. Z. Lu, X. Zhai, R. Yi, Z. Li, R. Zhang, Q. Wei, G. Xing, G. Lu, W. Huang, J. Phys. Chem. C.,
124, 7914 (2020).
[8]. J. Gholami, M. Manteghian, A. Badiei, M. Javanbakht, H. Ueda, Fuller. Nanotub. Carbon
Nanostructures, 23, 878 (2015).
[9]. P. Zheng, N. Wu, Chem. Asian J., 12, 2343 (2017).
[10]. K. Fan, X. Chen, X. Liu, Y. Liu, W. Lai, Y. Chen, X. Liu, X. Wang, Carbon, 165, 386
(2020).
[11]. J. Gholami, M. Manteghian, A. Badiei, H. Ueda, M. Javanbakht, Luminescence, 31, 229
(2016).
[12]. Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sens. Actuators B Chem., 25, 1179
(2017).
[13]. C. Teng, B. Nguyen, T. Yeh, Y. Lee, S. Chen, H. Teng, Nanoscale, 9, 8256 (2017).
[14]. A. Gupta, S.K. Saha, Nanoscale, 4, 6562 (2012).
[15]. M. Janghouri, J. Electron Mater., 46, 5635 (20177).
[16]. Z. X. Gan, S.J. Xiong, X.L. Wu, C.Y. He, J.C. Shen, P.K. Chu, Nano. Lett., 11, 3951 (2011).
[17]. L. Ruiyi , J. Yanhong, W. Qinsheng, Y. Yongqiang, L. Nana, S. Xiulan, Li Zaijun, Sens.
Actuators B Chem., 343, 130099 (2021)
[18]. A. Jeyaseelan, A. A. Ghfar, M. Naushad, N. Viswanathan, J. Environ. Chem. Eng., 9, 105384
(2021).
[19]. Z. Moua, X. Chenb, Y. Dua, X.Wanga, P. Yanga, S. Wang, Appl. Surf. Sci., 258, 1704
(2011).
[20]. L. R. MacGillivray, G.S. Papaefstathiou, T. Friscic, T. D. Hamilton, D. K. Bucar, Q. Chu, D.
B. Varshney, I. G. Georgiev, Acc. Chem. Res., 41, 280 (2008).
[21]. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc., 131,
15939 (2009).
[22]. F. Vivaldi, P. Salvo, N. Poma, A. Bonini, D. Biagini, L. D. Noce, B. Melai , F. Lisi, F. D.
Francesco, Chemosensors, 9, 33 (2021).
[23]. P. Salvo, B. Melai, N. Calisi, C. Paoletti, F. Bellagambi, A. Kirchhain, M.G. Trivella, R.
Fuoco, F. D. Francesco, Sens. Actuators B Chem., 256, 976 (2018).
[24]. Y. Yang, W. Lei, Y. Xu, T. Zhou, M, Xia, Q. Hao, Microchim. Acta., 185, 39 (2018).
[25]. T. Hallaj, N. Azizi, M. Amjadi, Microchem. J., 162, 105862 (2021).
[26]. H. Wang, Q. Lu, Y. Hou, Y. Liu, Y. Zhang, Talanta., 155, 62 (2016).
[27]. Y. Liu, Y. Li, Y. Yang, Y. Wen, M. Wang, J. Nanosci. Nanotechnol, 11, 10082 (2011).
[28]. J. Yang, D. Gong, G. Li, G. Zeng,Q. Wang, Y. Zhang, G. Liu, P. Wu, E. Vovk, Z. Peng, X.
Zhou, Y. Yang, Z. Liu, Y. Sun, Adv. Mater., 30, 1705775 (2018).
[29]. Y. Yang, X. Hu,Y. Zhao, L. Cui, Z. Huang, J. Long, J. Xu, J Deng, C. Wu, W.Liao, J Colloid
Interface Sci., 495, 68 (2017).
[30]. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
[31]. W. Kern, K. Hummel, Eur. Polym., 31, 437 (1995).
[32]. F. Farivar, P. L. Yap, R. U. Karunagaran, D. Losic, C., 7, 41 (2021).
[33]. V. P. Timchenko, A. L. Novozhilov, and O. A. Slepysheva, Russ. J. Gen. Chem., 74, 1046
(2004).
[34]. N.A.M. Noor, M.I.N. Isa, Am.-Eurasian J. Sustain. Agric., 9, 15 (2015).
[35]. V. H. Pham, T. V. Cuong, S. H. Hur, E. Oh, E. J. Kim, E. W. Shin, J. S. Chung, J. Mater.
Chem. A, 21, 3371 (2011).
[36]. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).
[37]. C.a. Tao, J. Wang, S. Qin, Y. Lv, Y. Long, H. Zhu, Z. Jiang, J. Mater. Chem., 22, 24856
(2012).
[38]. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi., J Am Chem Soc., 130, 5856 (2008).
[39]. T. Yoshida, K. Yamasaki, S. Sawada, Bull. Chem. Soc. Jpn., 52, 2908 (1979).
[40]. M. Barber, J. Connor, M. Guest, I. Hillier, M. Schwarz, M. Stacey, J. Chem. Soc., Faraday
Trans., 69, 551 (1973).
[41]. B. Folkesson, Acta Chem. Scand., 27, 19 (1973).
[42]. J. L. Chen, X. P. Yan, K. Meng, S.F. Wang, Anal. Chem, 83, 8787 (2011).
[43]. H. R. Thomas, C, Valles, R. J. Young, I. A. Kinloch, N. R. Wilson, J. P. Rourke, J. Mater.
Chem. C, 1, 338 (2013).
[44]. E. Sartori,M. Campolucci, D. Baranov, M. Zeng, S. Toso, M. Ferretti, ZHens, L. Manna, F.
Locardi, Nanoscale, Accepted (2022).
[45]. B. R. Coleman, T. Knight, V. Gies, Z. J. Jakubek, S. Zou, ACS Appl., Mater. Interfaces, 34,
28911 (2017).