Removal of Humic Acids (HAs) in Drinking Water by Adsorption onto Polysulfone/Fe2O3 Mixed Matrix Membrane: Study kinetics and Isotherm Analysis
Subject Areas : PolymerMoslem Rahmani piani 1 , Maryam Abrishamkar 2 , Bijan Mombini Godajdar 3 * , Mina Hossieni 4
1 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
2 - Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
3 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
4 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Keywords:
Abstract :
The present study delineates the applicability of polysulfone/ X% Fe2O3 mixed matrix membranes as a low-cost and non-toxic natural adsorbent. It was used to remove humic acids (HAs) rapidly from aqueous solutions. The polysulfone/ X% Fe2O3 mixed matrix membranes were characterized by BET, FT-IR, XRD, and SEM. The humic acids (HAs) removal by the developed adsorbent was investigated using the batch adsorption technique and all parameters influencing the removal efficiency such as dose of adsorbent and pH were considered. The optimal conditions for the humicacids (HAs) removal were found to be 5, 120-160 min, 10 mg/L, and 0.1 g for pH, contact time and adsorbent dosage respectively. The rapid adsorption of the humic acids (HAs) is an advantage of this adsorbent. The adsorption capacity of humic acids (HAs) onto polysulfone/ X% Fe2O3 mixed matrix membrane was reasonably constant in the pH range of 5–7 but decreased as the pH exceeded 5. Various isotherm models were used to fit the experimental equilibrium data. Equilibrium data obtained have been fitted to the Langmuir, Freundlich, and Dubinin–Radushkevich adsorptionisotherms. Langmuir's model best fits the experimental results. Kinetic modeling showed that the pseudo-second-order equation was the most appropriate for the description of humic acids (HAs) for PSF, PSF/5% Fe2O3, and PSF/10% Fe2O3 mixed matrix membrane were found to be 13.333, 10.309, and 7.874 mg/g, respectively. The overall results confirmed that polysulfone/ X% Fe2O3 mixed matrix membrane could be a promising adsorbent material for humic acids (HAs) removal from aqueous solutions.
[1]. N.D.J. Graham, Water Science and Technology, 40 (1999).
[2]. G. Hasani, A. Maleki, H. Daraei, R. Ghanbari, M. Safari, G. McKay, K. Yetilmezsoye, F.
Ilhane, N. Marzban, Process Safety and Environmental Protection, 121, 103 (2019).
[3]. L. Zhang, L. Luo, S. Zhang, Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 406, 84(2012).
[4]. E. Derakhshani, A. Naghizadeh, Journal of Molecular Liquids, 259, 76 (2018).
[5]. M. Salman, B. El-Eswed, F. Khalili, Adsorption of humic acid on bentonite, Appl. Clay Sci., 38,
51(2007).
[6]. D. Barlokova, J. Ilavsky, O. Kapusta. Removal of humic substances in water by granular
activated carbon. Environmental Engineering 10th International Conference Vilnius Gediminas
Technical University Lithuania, 27–28 April 1 (2017).
[7]. A. Naghizadeh, Arabian Journal of Science and Engineering, 41, 155 (2016).
[8]. K.Y.A. Lin, H.A. Chang, Water. Air. Soil Pollut., 226, 2280 (2015).
[9]. F. Wang, J. He, B. He, X. Zhu, X. Qiao, L. Peng, Journal of Environmental Sciences, 69, 251
(2018).
[10]. A. Zhang, W. Chen, Z. Gu, Q. Li, G. Shi, RSC Adv., 8, 33642 (2018).
[11]. M. Schnitzer, S. Khan, Humic substances in the environment. M. Dekker, New York (1972).
[12]. B.L. Rivas, E.D. Pereira, M. Palencia, J. Sánchez, Prog. Polym. Sci., 36, 294 (2011).
[13]. A. Naz, A. Kausar, M. Siddiq, M.A. Choudhary, Polym. Plast. Technol. Eng., 55, 171 (2016).
[14]. E. Badamshina, M. Gafurova, J. Mater. Chem., 22, 9427 (2012).
[15]. X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Chem. Eng. J., 170, 381(2011).
[16]. L. Cumbal, J. Greenleaf, D. Leun, A.K. SenGupta, React. Funct. Polym., 54, 167 (2003).
[17]. A. Naghizadeh, H. Shahabi, F. Ghasemi, A. Zarei, Journal of Water and Health, 14(6), 989
(2016).
[18]. N. Dmitry Voylov, P. Adam, B. Holt, V. Doughty, M. Harry, S. Meyer, H. Cheng, M. Martin,
A. Dadmun, P. Kisliuk, Alexi Sokolov, ACS Macro Lett., 6, 68 (2017).
[19]. M.S. Jyothi, V. Nayak, M. Padaki, R.G. Balakrishna, K. Soontarapa, Chem. Eng. J., 283, 1494
(2016).
[20]. J. Wang, Y. Zhou, A. Li, L. Xu, J. Hazard.Mater., 176, 1018 (2010).
[21]. P. Jin, J. Song, L. Yang, X. Jin and X. C. Wang, Environ. Pollut., 233, 290 (2018).
[22]. Q. Tao, Z. Xu, J. Wang, F. Liu, H. Wan, S. Zheng, Microporous Mesoporous Mater., 131, 177
(2010).
[23]. A. Mehrparvar, A. Rahimpour, M. Jahanshahi, Journal of the Taiwan Institute of Chemical
Engineers, 45, 275 (2014).
[23]. Y.H. Teow, A.L. Ahmad, J.K. Lim, B.S. Ooi, Journal of Applied Ppolymer Science, 128, 3184
(2013) .
[24]. M. Ebrahimi, S. Bagheri, M. Maleki Taleghani, M. Ghorabani, Desalination and Water
Treatment, 60, 1 (2019).
[25]. E.M. Pena Mendez, J. Havel, J. Patocka, Journal of Applied Biomedicine, 3, 13 (2005).
[26]. M. Sohrabi, J. Appl. Chem. Res., 15, 1, 64 (2021).
[27]. G.H. Vatankhah, T. Ershad, Journal of Physical and Theoretical Chemistry, 15(1), 1(2018).
[28]. W. Zhang, H. Emamy, P. Betancourt, F. Vargas-Lara, J.F. Dougla, J. Chem. Phys, 151,
124705 (2019).
[29]. J.L. Lin, C. Huang, B. Dempsey, J.Y. Hu, Water Research, 56, 314 (2014).
[30]. S.H. Falahrodbari, Orient. J. Chem., 33(2), 910 (2017).
[31]. S. Mallakpour, P. Asadi, Polym. Bull., 68, 53 (2012).
[32]. A.H. Chin, S.P. Yeap, Progress in Energy and Environment, 6, 33 (2018).
[33]. L. Rasuli, A.H. Mahvi, Journal of Water Chemistry and Technology, 38, 21 (2016).
[34]. H. Eustaquio, C. Lopes, B. Cardoso, S.D.C. Pergher, Adsorption Science & Technology, 33,
117 (2015).
[35]. T. Yang and M. E. Hodson, Sci. Total Environ., 635, 1036 (2018).
[36]. A. Naghizadeh, S. Nasseri, S.H. Nazmara, Iran. J. Environ. Health. Sci. Eng., 8, 317 (2011).
[37]. G. Hasani, H. Daraei, B. Shahmoradi, F. Gharibi, A. Maleki, K. Yetilmezsoy and G. McKay,
Process Saf. Environ. Prot., 117 111, (2018).
[38]. Q. Yin, H. Ren, R. Wang and Z. Zhao, Sci. Total Environ., 631(2018).
[39]. I. Langmuir, Journal of the American Chemical Society, 40, 1361 (1918).
[40]. H.M.F. Freundlich, Journal of Physical Chemistry A., 57, 385 (1906).
[41]. M.M. Dubinin, Chem. Res., 60, 235 (1960).
[42]. M.M. Dubinin, Zh. Fiz. Khim., 39, 1305(1965).
[43]. M. Toor and B. Jin, Chem. Eng. J., 187, 79 (2012).
[44]. Y.S. Ho, Journal of Hazardous Materials, 136, 681 (2006).
[45]. S. Bousba, N. Bougdah, N. Messikh, P. Magri, Phys. Chem. Res., 6 (2018).
[46]. M. Masoudzadeh, N. Karachi, Journal of Physical and Theoretical Chemistry, 14(3), 259
(2018).
[47]. L.N. Shiyan, K.I. Machekhina, E.N. Gryznova, Materials Science and Engineering, 110,
12097 (2016).