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Early detection of breast cancer is critical for improving patient survival; however, accurate 

interpretation of digital mammography remains challenging due to dense breast tissue, 

overlapping anatomical structures, and low-contrast lesions. Recent advances in deep 

learning particularly object detection frameworks from the YOLO family; have shown 

promise for automated lesion detection. Nevertheless, systematic and controlled 

comparisons of contemporary YOLO architectures in mammography remain limited. 

This study presents a rigorous comparative evaluation of three lightweight YOLO variants 

YOLOv5n, YOLOv8n and YOLOv11n for automated breast lesion detection in digital 

mammography. Experiments were conducted on the VinDr-Mammo dataset comprising 

over 20,000 expert-annotated mammograms. To ensure fairness and reproducibility, all 

models were trained under identical conditions using a clinically validated preprocessing 

pipeline, including Contrast_imited_adaptive histogram equalization (CLAHE), bilateral 

filtering and safety preserving data augmentation. A patient wise five-fold cross validation 

strategy was employed. 

Model performance was assessed using lesion level metrics including mean average 

precision, precision, recall, and F1-score, alongside image level receiver operating 

characteristic and precision–recall analyses.  

While all models showed good performance, YOLOv11n outperformed all the other 

models, attaining an mAP₀.₅ of 68.28% and mAP₀.₅:₀.₉₅ of 40.82%, which is 5.4% and 9.2% 

better than YOLOv8n and YOLOv5n, respectively. YOLOv11n also displayed superior 

performance metrics, achieving better sensitivity (0.69) and precision (0.73) especially on 

small and slightly contrast lesions, all while achieving real-time performance at 92 fps and 

lower GPU memory usage. The results represent the best available performance and 

document an increase in accuracy and efficiency for the clinically actionable AI-based CAD 

systems. 
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I. Introduction 

Despite advancements in diagnostic imaging techniques, 

breast cancer continues to challenge healthcare organizations 

globally due to its prevalent complicated diagnostic 

imaging[1]. Digital mammography is the main technique 

recommended to diagnose breast cancer early and, most 

importantly, diagnose lesions before they are symptomatic 

[2]. However, the precise identification of subtle, small, and 

low-contrast abnormalities is still problematic due to 

overlapping glandular structural abnormalities, varying 

levels of image noise, and wide variation in breast density. 

There are inconsistent abnormalities that are also interpreted 

as missing, adding to the false/ positive- and false negative- 

rate in varying levels of breast density [3]. Since the 

prognosis of the patient is worsened, the treatment gap also 

raises the cost of the interventions; the necessity to increase 

the precise measurement of patient outcomes is the enhanced 

diagnostic imaging of the interpretive mammography [4]. 

CAD systems provide invaluable assistance for 

radiologists through objective and automated detection of 

anomalous areas in medical images. The rapid advancements 

of artificial intelligence especially deep learning have 

revolutionized automated medical imaging through real-time 

feature extraction and classification of complex images [5]. 

Within this framework, deep learning object detection 

models, within the YOLO family of algorithms, have 

outstanding efficacy and real-time localization for different 

image modalities [6]. Their single-shot detection and high-

speed inference cut down processing time and improve the 

accuracy of real-time CAD systems. 

While there has been progress, there are still issues that 

need to be addressed. Previous research has studied the 

image classification and image segmentation tasks that are 

not localized to specific tumor borders. Also, there have been 

few direct comparisons of the state of the art YOLO 

architectures. The most recent models, YOLOV8 and 

YOLOV11, include more advanced backbones, better 

feature fusion architectures, and more powerful detection 

heads yielding better accuracy and performance compared to 

models within the same family [7–9]. However, there has yet 

to be a thorough assessment of the models in the detection of 

lesions in mimeographs. This absence of study is critical to 

furthering understanding of the most appropriate model to be 

used for CAD systems in the clinical environment, especially 

with the balance of accuracy, generalization and real-time 

processing. 

To address these gaps, this study presents, to the best of 

our knowledge, the first systematic comparative evaluation 

of three representative YOLO architectures YOLOv5, 

YOLOv8, and the latest YOLOv11 for automated breast 

cancer detection in full-field digital mammography. Using 

the public VinDr-Mammo dataset[10], all models were 

trained in the same procedure with a consistent training 

preparation pipeline and preprocessing steps consisting of 

Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) and bilateral filtering for contrast enhancement 

and noise reduction prior to training. This study assesses the 

models and benchmarks them using mean Average Precision 

(mAP) and recall to determine the overall performance for 

detection in order to recommend the most suitable for (real-

time) integration within a CAD system. 

The continuation of this paper will be completed as 

follows: Section 2 outlines the datasets, model architectures, 

implementation strategies, and training procedures. Section 

3 provides the description of the analysis of comparisons. 

Section 4 gives a comprehensive description of the results 

and discusses the clinical importance and the limitations of 

the study. Finally, Section 5 closes with the summary of the 

study and suggestions related to the further exploration of 

strong and clinically useful AI systems for computer-aided 

systems for breast cancer detection 

. 

II. Methodology 

  A. Study Design 

In order to assess the functionality of the three 

contemporary YOLO models (YOLOv5n, YOLOv8n, 

YOLOv11n), this study was designed as an experimental, 

quantitative, and comparative assessment of the three 

models' architectures in the automated detection of breast 

lesions in full-field digital mammography (FFDM). To 

facilitate reproducibility of results and unbiased comparative 

analysis of the models' architectures, all models were trained 

within the same framework. 

The methodological path consisted of the following four 

steps: 

1. Acquisition of the dataset and analysis of the 

annotations 

2.  Data preprocessing, augmentation, and clinical safety 

3. Uniform training of the YOLO models and cross-

validation 

4. Evaluation of the models, performance of statistical 

tests, and assessment of the applied computational resources 

The first objective was to identify the YOLO model 

variant that achieved the greatest level of operational 

efficiency, reliability, and accuracy in combination with the 

least level of lag in the system in order to be implemented in 

routine clinical practice as part of a computer-aided detection 

(CAD) system. 

   B. Dataset Description 

The dataset known as VinDr-Mammo consists of over 

20,000 mammograms compiled from various CC and MLO 

angles. The VinDr-Mammo dataset used in this study 

corresponds to version 1.0. Images labeled as BI-RADS 0 
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(incomplete assessments) were excluded to avoid ambiguity 

in ground-truth definition and to ensure annotation reliability 

across all folds. 

Each mammogram contains expert bounding box 

annotations that:   

1. Mass  

2. Calcification  

3. Architectural distortion  

4. Asymmetry 

Expert annotations were subjected to a double reading of 

the protocol supervised by a radiologist with extensive 

experience.  

Definitions of Classes in This Study  

Here, to minimize bias, we did not differentiate the lesions 

for the purposes of this study and instead consolidated all 

lesion types into one classification as a single ‘lesion’ due to 

the prevalence of this methodology in the literature for CAD 

detectors. 

Format of the Labeling  

The bounding boxes have been represented in the 

normalized YOLO format for all bbox details including: 

(x_center, y_center, width, height) and all of these were 

conducted in the range of [0, 1]. The annotations have been 

verified across the folds were consistent in the bounding 

boxes. Original annotations provided in absolute pixel 

coordinates (x_min, y_min, x_max, y_max) were converted 

into the normalized (x_center, y_center, width, height) 

YOLO format to ensure consistency across all training folds. 

Dealing with Class Imbalance  
In order to counter the existing imbalance between the 

benign, malignant, and background annotations, numerous 

corrective methods were implemented. These were class 

balanced sampling during training, increased loss weighting 

for malignant lesions (weight factor = 1.5), and adding a 

focal loss term in the classification branch of YOLOv8n and 

YOLOv11n to address the under-detection of malignant 

cases. 
 

   C.  Data Splitting 

A 5-fold patient-independent cross-validation scheme was 

used. 

For each fold: 

• 80% training 

• 10% validation 

• 10% testing 

CC and MLO views belonging to the same patient were 

always assigned to the same subset. 

This approach ensures robust generalization and unbiased 

evaluation across demographic and imaging variations. 

 

   D. External Validation Protocol 

To evaluate the generalizability of the proposed YOLO-

based detection framework and assess its robustness against 

domain shift, an external validation experiment was 

conducted using the INbreast dataset(12). 

The INbreast dataset consists of high-resolution full-field 

digital mammograms acquired using different imaging 

devices, acquisition protocols, and population characteristics 

compared to VinDr-Mammo. These differences introduce a 

realistic domain shift in terms of image contrast, noise 

distribution, lesion appearance, and annotation style, thereby 

providing a rigorous test of cross-domain generalization. 

For this external validation, the YOLOv5n, YOLOv8n, 

and YOLOv11n models were evaluated exclusively in 

inference mode using the weights trained on VinDr-Mammo. 

No fine-tuning, retraining, or domain adaptation was applied 

to the INbreast dataset. This design choice ensures that the 

observed performance reflects the intrinsic generalization 

capability of the learned representations rather than dataset-

specific optimization. 

All preprocessing steps, confidence thresholds, and post-

processing configurations were kept identical to those used 

in the primary evaluation to guarantee methodological 

consistency. Performance was assessed using lesion-level 

detection metrics and clinically relevant false-positive 

measures. 

 

    E. Preprocessing Pipeline 

A clinically validated preprocessing pipeline was applied: 

✔ CLAHE: 

Clip limit = 2.5, tile size = 8×8 

✔ Bilateral Filtering: 

Diameter = 13, σColor = 75 

✔ Normalization & Resizing: 

Images resized to 1024×1024, letterboxed to preserve 

aspect ratio 

Pixel intensities normalized to [0,1]. 

✔ Clinically-Safe Augmentation: 

• Rotations ±10° 

• Horizontal flip 

• Brightness/contrast shift ±15% 

• Gaussian noise σ=0.01 

• Mild cropping ≤4% 

• scaling 0.95–1.05 

Mosaic and Mix-up were intentionally excluded, as these 

distort lesion morphology and are discouraged in medical 

detection tasks. 

F.  YOLO Architectures Evaluated 

Evaluation of YOLO Architectures  

Three nano architectures have been evaluated given: 

YOLOv5n: CSP-Darknet backbone with anchor-based 

YOLOv8n: Decoupled detection head, BiFPN-like neck, 

anchor-free 

YOLOv11n: C2f backbone, With RT-DETR inspired 

refinement head, enhanced DFL and DIoU loss. 

The nano variants (v5n, v8n, v11n) were selected for their 

incredibly small parameter counts and ability to perform 

real-time inference, allowing for their deployment in clinical 
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CAD systems with limited computational capacity and fast 

processing requirements. 

TABLE 1. Comparative architectural characteristics of 

YOLOv5n, YOLOv8n, and YOLOv11n used in this study. 
Feature / 

Property 

YOLOv5

n 
YOLOv8n YOLOv11n 

Model Type 
Anchor-

based 
Anchor-free Anchor-free 

Detection 

Head 

Coupled 

head 

Decoupled 

head 

Enhanced 
decoupled head 

(RT-DETR-

inspired) 

Backbone 
CSP-

Darknet 

C2f-based 

Backbone 

Improved C2f + 
RepViT-like 

blocks 

Neck / Feature 

Fusion 
PANet BiFPN-like 

Improved BiFPN 
+ dynamic feature 

routing 

Input 

Resolution 

(study) 

1024×102

4 
1024×1024 1024×1024 

Number of 

Parameters (n-

version) 

~1.9M ~3.2M ~3.1M 

FLOPs @ 

640×640 

~4.5 

GFLOPs 

~8.7 

GFLOPs 
~8.2 GFLOPs 

Anchor Usage 

Yes 
(manual 

priors) 

No No 

Loss Functions 
BCE + 

GIoU 

BCE + DFL 

+ CIoU 

BCE + Enhanced 

DFL + DIoU 

Strengths 
Lightweig

ht baseline 

High 

accuracy + 

fast 
inference 

Best accuracy–

speed tradeoff, 

improved small-
lesion detection 

Weaknesses 

Lower 

precision, 
older 

design 

Moderate 

computation

al load 

Slightly heavier 
than v5 

 

    G. Architectural Ablation Design 
To rigorously analyze the sources of performance 

gains observed in YOLOv11n, a two-level ablation study 

was designed to disentangle the individual contributions 

of preprocessing strategies and architectural 

enhancements. The ablation framework isolates 

improvements arising from (i) preprocessing alone and 

(ii) architectural modifications independent of 

preprocessing. 

At the preprocessing level, standardized image 

enhancement techniques including CLAHE, bilateral 

filtering, and clinically safe data augmentation—were 

applied to baseline YOLO architectures to quantify their 

isolated impact. At the architectural level, selective 

components of YOLOv11n were systematically removed 

or replaced while preserving identical training conditions 

and preprocessing pipelines. 

Specifically, the following ablation variants were 

evaluated: 

YOLOv8n + preprocessing: to measure gains 

attributable solely to preprocessing. 

YOLOv11n without enhanced SPPF module: to 

assess the contribution of advanced multi-scale context 

aggregation. 

YOLOv11n without C2f architectural improvements: 

reverting to earlier backbone blocks to evaluate feature 

extraction gains. 

Full YOLOv11n pipeline: incorporating both 

optimized preprocessing and complete architectural 

enhancements. 

All ablation variants were trained and evaluated 

under identical hyperparameters and cross-validation 

protocols to ensure fair comparison. Performance 

differences were assessed using lesion-level mAP and 

recall metrics to identify the dominant contributors to 

detection accuracy improvements. 

 

H. Training Configuration 
All models were trained using: 

 Python 3.10 

 PyTorch 2.1 

 Ultralytics 8.2.0 

 NVIDIA RTX 3090 (24GB VRAM) 

 Ubuntu 22.04 

Hyperparameters 

 Epochs: 200 

 Optimizer: AdamW 

 LR = 0.002 

 Scheduler: Cosine Annealing 

 Batch size = 16 

 Weight decay = 0.0005 

 Early stopping = 20 epochs 

 Gradient clipping: Norm = 1.0 

Loss Functions 

 YOLOv5n: BCE + GIoU 

 YOLOv8n: BCE + DFL + CIoU 

 YOLOv11n: BCE + Enhanced DFL + DIoU 

Focal loss term was selectively applied to mitigate 

malignant under-detection. 

G.  Post-processing 

A consistent NMS configuration was applied: 

Confidence threshold = 0.25 

IoU threshold (NMS) = 0.45 (standard Ultralytics 

setting) 

Class-agnostic NMS = Disabled 

Max detections per image = 300 

Soft-NMS was evaluated but not used during final 

comparison to maintain fairness across models 

. 

    I.  Evaluation Metrics 
Lesion-level detection metrics: 

 mAP₀.₅ 

 mAP₀.₅:₀.₉₅ 

 Precision 

 Recall 

 F1-score 

 ROC/PR Curves 

Since YOLO performs detection, ROC and PR curves were 

computed at image-level, where: 

An image was considered positive if at least one lesion 

prediction exceeded confidence threshold 0.25. 

 

    J. Free-response ROC (FROC) Analysis 
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  In addition to mean Average Precision (mAP), a Free-

response Receiver Operating Characteristic (FROC) analysis 

was conducted to better reflect clinical diagnostic 

performance. FROC curves evaluate lesion-level sensitivity 

as a function of the average number of false positives per 

image (FPPI), which is a clinically relevant metric for 

computer-aided detection systems. Sensitivity was reported 

at predefined FPPI levels of 0.5, 1, and 2 false positives per 

image.  

   K. Statistical Analysis 
Results expressed as mean ± standard deviation across 5 

folds 

Paired t-test applied for YOLO model comparisons 

Analysis performed using SciPy 1.11.4 & NumPy 1.26.2 

 

     L.  Explainability Analysis 
  To address the interpretability requirements of deep 

learning–based Computer-Aided Detection (CAD) 

systems in oncology, an explainability analysis was 

conducted using Grad-CAM++ and Eigen-CAM 

techniques. These methods were applied to the backbone 

feature maps of the YOLO models to generate class-

discriminative localization maps corresponding to lesion 

predictions. 

For YOLOv11n, Grad-CAM++ was computed from the 

final convolutional layer of the C2f backbone, which 

preserves high-level semantic information while retaining 

sufficient spatial resolution. The objective of this analysis 

was to visually validate whether the model’s predictions 

were driven by clinically relevant pathological features 

rather than background structures or acquisition artifacts. 

The generated activation maps were overlaid onto the 

original mammograms to assess model attention with 

respect to key diagnostic patterns, including 

microcalcification clusters, spiculated lesion borders, and 

mass margin irregularities. This visual validation 

complements the quantitative evaluation by providing 

insight into the decision-making process of the network. 

 

    M.  Computational Efficiency 
Clinical feasibility assessed using: 

 inference time (ms/image) 

 FPS 

 model size 

 FLOPs (reported at 640×640, per Ultralytics convention) 

 GPU memory usage 

All measurements were obtained on identical hardware. 

 

Computational Cost vs Clinical Feasibility 

Evaluating model performance is also an exercise in 

balancing computational efficiency with real-world clinical 

workflow constraints. In large-scale mammography 

screening programs, models with long inference times or 

high memory consumption become impractical due to the 

substantial volume of daily imaging data [11]. Therefore, all 

YOLO variants were additionally evaluated with respect to 

inference speed, GPU memory utilization, model size, and 

frames per second (FPS), using identical hardware 

conditions. These measurements allow objective assessment 

of whether each architecture is suitable for real-time 

deployment, particularly in low-resource clinical 

environments where hardware capacity is limited. The 

results directly inform the feasibility of integrating the model 

into routine CAD workflows while ensuring minimal latency 

and minimal computational overhead. 

In addition to GPU-based evaluation, inference performance 

was systematically profiled across heterogeneous hardware 

environments to reflect realistic clinical deployment 

scenarios. Specifically, model inference was evaluated on 

both a high-end GPU (NVIDIA RTX 3090) and standard 

CPU platforms, including an Intel Core i7-12700 and an Intel 

Xeon Silver 4214, representing common workstation and 

hospital server configurations. 

To assess the impact of numerical precision on latency and 

accuracy, inference was conducted under FP32 and INT8 

precision settings. Quantization-aware evaluation was 

performed without fine-tuning to simulate edge-device 

deployment constraints. For each configuration, inference 

latency (milliseconds per image), throughput (frames per 

second) and lesion-level mAP were recorded. This 

comprehensive profiling enables objective assessment of 

computational feasibility for real-time, low-resource, and 

PACS-integrated clinical environments. 

 N.  Workflow Overview 

 

 

 

 

Fig. 1. Workflow of the proposed YOLO based CAD system 

including preprocessing, training, cross-validation, and 

evaluation. 

 

III. Results 

This section reports and compares the performances of 

YOLOv5n, YOLOv8n and YOLOv11n concerning the 

lesion- and image-level detection metrics. All metrics are 

reported as mean ± standard deviation calculated over the 5 

folds of cross validation. 

   A.  Performance Metrics    
All three architectures were trained and validated on the 

same settings on the VinDr-Mammo dataset. The overall 

quantitative metrics across the evaluated architectures with 

respect to mAP, precision, recall, and F1-score are provided 

in Table 2. 
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TABLE 2. Lesion-level detection performance of YOLO 

models (5-fold cross-validation). 

Model 
mAP₀.₅ 

(%) 

mAP₀.₅:₀.₉

₅ (%) 
Precision Recall 

F1-

score 

YOLOv

5n 

59.10 ± 

1.8 

31.60 ± 

1.2 

0.67 ± 

0.02 

0.61 ± 

0.03 

0.64 

± 
0.02 

YOLOv

8n 

62.86 ± 

1.5 

36.40 ± 

1.0 

0.70 ± 

0.02 

0.65 ± 

0.02 

0.67 

± 
0.02 

YOLOv

11n 

68.28 ± 
1.4 

40.82 ± 
1.1 

0.73 ± 
0.02 

0.69 ± 
0.02 

0.71 

± 

0.02 

With mAP0.5, YOLOv11n had maximum accuracy with a 

5.4% and 9.2% improvement over YOLOv8n and YOLOv5n 

respectively. YOLOv11n also had the maximum accuracy 

improvement. YOLOv11n showed the best trade-off 

between specificity and sensitivity. Some of the differences 

were statistically significant. A paired t-test between folds 

verified that in mAP and Recall, YOLOv11n had a 

significantly higher score than alternative models (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Training and validation loss curves for 

YOLOv5n, YOLOv8n, and YOLOv11n over 200 epochs. 

To further examine the training behavior and 

optimization stability of the evaluated architectures, Figure 

2 shows the training and validation loss curves across 200 

epochs. YOLOv11n exhibits faster convergence and lower 

validation loss compared to YOLOv5n and YOLOv8n, 

indicating more efficient feature extraction and reduced 

overfitting. 

B. Cross-Dataset Evaluation Results 

Table 3 presents the cross-dataset evaluation results 

obtained by applying the models trained on VinDr-

Mammo directly to the INbreast dataset. As expected, a 

moderate performance degradation is observed across all 

models due to domain shift effects. However, YOLOv11n 

consistently maintains superior performance compared to 

YOLOv5n and YOLOv8n across all reported metrics. 

TABLE 3. Cross-dataset evaluation results on the INbreast 

dataset  
Dataset Model mAP₀.₅ (%) Recall FPPI@90% 

INbreast YOLOv5n 52.34 0.57 1.84 

INbreast YOLOv8n 56.92 0.61 1.42 

INbreast YOLOv11n 61.78 0.66 1.08 

Despite the absence of fine-tuning, YOLOv11n 

demonstrates superior cross-dataset generalization, 

achieving the highest mAP₀.₅ and recall while maintaining 

the lowest false positives per image at 90% sensitivity. 

Compared to YOLOv5n and YOLOv8n, YOLOv11n 

reduces FPPI by approximately 41% and 24%, 

respectively, indicating improved robustness under 

domain shift conditions. 

C.  ROC and Precision–Recall Analysis 

 

 

 

 

 

Fig. 3. ROC curves for YOLOv5n, YOLOv8n, and 

YOLOv11n aggregated at image level across 5-fold cross-

validation 

 

To further assess discriminatory performance beyond 

lesion-level mAP, image-level ROC and Precision–Recall 

(PR) curves were generated by aggregating detection scores 

across all images in each fold. Figures 3 and 4 illustrate the 

ROC and PR curves, respectively, for YOLOv5n, 

YOLOv8n, and YOLOv11n. 
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As shown in Figure 3, YOLOv11n demonstrates the 

steepest ROC curve and achieves the highest AUC-ROC 

(0.89), indicating superior ability to distinguish between 

positive and negative mammograms across a range of 

decision thresholds. Similarly, Figure 4 depicts the PR 

curves, where YOLOv11n consistently maintains the highest 

precision across varying recall levels. The improved AUC-

PR score (0.73) highlights the model’s enhanced 

performance particularly under class-imbalance conditions, 

which are common in mammography datasets. 

Fig. 4. Precision–Recall curves for YOLOv5n, YOLOv8n, and 

YOLOv11n demonstrating sensitivity–precision trade-offs. 

 
TABLE 4. Image-level ROC and PR metrics 

Model AUC-ROC AUC-PR 

YOLOv5n 0.81 0.63 

YOLOv8n 0.85 0.68 

YOLOv11n 0.89 0.73 

YOLOv11n achieved the highest AUC (0.89), 

demonstrating superior discriminatory capability. 

 

D. FROC Analysis 
To further assess clinical applicability, FROC curves were 

generated for all models by plotting lesion-level sensitivity 

against false positives per image (FPPI). As shown in Figure 

5, YOLOv11n consistently achieves higher sensitivity at 

lower FPPI levels compared to YOLOv5n and YOLOv8n, 

indicating superior detection capability with fewer false 

alarms. 

TABLE 5. FROC-based performance comparison at 

clinically relevant sensitivity levels 

Model 
FPPI@80% 

Sensitivity 

FPPI@90% 

Sensitivity 

YOLOv5n 1.42 1.98 

YOLOv8n 1.08 1.54 

YOLOv11n 0.76 1.02 

Fig. 

5. 

Free-response Receiver Operating Characteristic (FROC) 

curves illustrating lesion-level sensitivity versus false 

positives per image (FPPI) for YOLOv5n, YOLOv8n, and 

YOLOv11n. YOLOv11n maintains higher sensitivity at 

lower FPPI levels, demonstrating improved clinical 

usability. 

   E.  Qualitative Analysis of the Detection Results 

In addition to the results previously discussed, to include 

the detection of lesions, YOLOv5n, YOLOv8n, and 

YOLOv11n model performances on random and 

representative mammograms are shown in Figure 5 

YOLOv11n shows the highest accurate localization with the 

least false positive occurrences, especially on dense 

mammographic tissues and low contrast lesions. YOLOv5n 

and YOLOv8n have missing subtle detections, and although 

YOLOv8n showed some increased moderate performance, it 

still exhibited high occurrences of false positive box 

markings, especially with a scattered appearance. These 

results illustrate the robust performance of YOLOv11n 

which shows increased performance on even the most 

challenging datasets. 

 

 

 

 

 

 

 

Figure 6. Sample lesion detection results on a difficult 

mammographic case. Columns show predictions from 

YOLOv5n, YOLOv8n, and YOLOv11n respectively. 

YOLOv11n provides the most accurate localization with 

fewer false positives, especially in dense glandular regions.  

 

    F. Visual Interpretability Results 

Figure 7 illustrates representative examples of visual 

interpretability results obtained using Grad-CAM++ for 

YOLOv11n. Each example consists of three aligned 

components: the original mammographic image, the 

corresponding lesion detection bounding box, and the Grad-

CAM++ heatmap overlaid on the image. 
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The activation maps demonstrate that YOLOv11n 

consistently focuses on clinically meaningful regions, 

including microcalcification clusters, spiculated lesion 

contours, and irregular mass margins. High-response regions 

closely align with radiologist-annotated lesion boundaries, 

indicating that detections are guided by pathological 

characteristics rather than irrelevant background structures. 

Importantly, minimal activation was observed over non-

diagnostic areas such as the pectoral muscle, background 

tissue, or image borders, supporting the reliability and 

clinical plausibility of the model’s predictions. 

 
Fig. 7. Visual interpretability analysis of YOLOv11n 

using Grad-CAM++. 

Representative mammographic cases illustrating (left) the 

original image, (center) the predicted lesion bounding box, 

and (right) the Grad-CAM++ heatmap overlay. The model 

consistently attends to clinically relevant pathological 

features such as microcalcification clusters, spiculated 

margins, and mass boundaries, while suppressing 

background activations. 

    G. Computational Efficiency 
Inference speed and GPU memory consumption are 

essential for clinical deployment. 

TABLE 6. Computational efficiency metrics. 
Model FPS GPU Memory (GB) Model Size (MB) 

YOLOv5n 105 3.2 3.7 

YOLOv8n 84 4.1 4.8 

YOLOv11n 92 3.5 4.2 

Conclusions on Efficiency: 

 YOLOv11n operates with a remarkable 92 fps. 

 Regarding YOLOv8n, utilization of GPU memory is 

14% less. 

 Hence, integration into CAD solutions is entirely viable. 

 

   H. Inference Performance Across Hardware and 

Precision Settings 
To evaluate the deployability of the proposed models in 

real-world clinical environments, inference performance 

was benchmarked across GPU and CPU platforms under 

multiple numerical precision configurations. 

TALE 7. Inference performance across hardware and precision 

settings (YOLOv11n) 

Device Precision FPS 
Latency 

(ms) 

mAP₀.₅ 

(%) 

RTX 3090 FP32 78 12.8 68.28 

RTX 3090 INT8 115 8.7 67.54 

Intel i7-12700 FP32 14 71.4 67.96 

Intel i7-12700 INT8 22 45.2 67.31 

Intel Xeon 
4214 

FP32 9 111.3 67.85 

Intel Xeon 

4214 
INT8 15 66.7 67.08 

The results indicate that FP32 and INT8 quantization 

substantially reduce inference latency while maintaining 

near-identical detection accuracy. Even under CPU-only 

deployment, YOLOv11n preserved clinically acceptable 

performance with modest throughput, supporting its use in 

resource-constrained environments. 

 

    I. Architectural Ablation Results 
TABLE 7 summarizes the quantitative results of the 

architectural and preprocessing ablation experiments. The 

results clearly demonstrate that both preprocessing and 

architectural enhancements contribute to performance gains, 

with architectural refinements playing the dominant role. 

TABLE 8. Architectural and preprocessing ablation results on 

VinDr-Mammo 
Variant mAP₀.₅ (%) Recall 

YOLOv8n (baseline) 62.86 0.65 

YOLOv8n + preprocessing 65.94 0.67 

YOLOv11n without 
enhanced SPPF 

66.12 0.66 

YOLOv11n without C2f 

improvements 
64.88 0.65 

YOLOv11n (full pipeline) 68.28 0.69 

The effect of preprocessing alone improved mAP by 

approximately +3.1%, indicating its effectiveness in 

enhancing lesion contrast and suppressing noise. However, 

removal of key architectural components from YOLOv11n 

resulted in noticeable performance degradation, highlighting 

the critical role of backbone and neck refinements in 

detecting small and low-contrast lesions. 

 

IV. Discussion 

This work examined the performances of three YOLO 

architectures: YOLOv5n, YOLOv8n, and YOLOv11n in the 

context of their automated detection of breast lesions in full-

field digital mammograms, having balanced performances 

from the ideal set of metrics in the given experimental 

conditions. YOLOv11n has the distinction of being the most 

accurate, most the most robust, and the most computationally 

efficient, and has, therefore, the strongest overall 

performance of the set. 

  

A.  Discussion of the Results 

YOLOv11n had the best overall performances for the 

metrics mAP₀.₅, mAP₀.₅:₀.₉₅ and was also the highest in recall 

and precision. For the improvements in the architecture of 

YOLOv11, the focal points are the C2f walkway, the absence 

of anchors, the modified decoupled mechanisms for 

regression and classification, and the effective feedback for 

the efficient aggregation of features from many uneven 

layers. YOLOv11n was able to retain much of the 

information formed in lower contrast lesions, and the 

outlines of lesions that were marginal were often difficult to 

discern, especially the significant structural details. 
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Opacities, that were often much smaller in size, were also 

particularly problematic to discern and interpret in the 

context of breast mammograms. 

 

B. Comparison With Previous Literature 

With respect to previously analyzed versions of YOLO in 

current literature, such as those by Zhang et al. (2022) using 

YOLOv5 and those by Chen et al. (2023) using YOLOv8, 

YOLOv11n shows enhanced accuracy and speed in 

inference concerning the location of lesions. This 

corroborates the ongoing hypothesis on the preference of 

new, anchor-free, single-stage models as opposed to older, 

two-stage, anchor-based models, especially in the case of 

small, irregular lesions, as is common in dense breast tissue, 

due to the advanced feature pyramid technology. 

 

C.   Clinical Relevance 

Clinically, YOLOv11n's ease of integration into 

mammography CAD systems (with potential clinical 

approval) can be justified especially due to its architecture 

and inference speed of 92 FPS. The distribution of the model 

outputs also suggests the model's potential in assisting 

radiologists in screening exams, especially when the exams 

are done at a high throughput and during fatigue. The 

model's performance is likely to be as consistent as the model 

outputs due to the statistical constancy observed in the 

different folds of cross validation. 

From a clinical perspective, reducing the number of false 

positives per image is critical for minimizing radiologist 

fatigue and maintaining workflow efficiency in large-scale 

screening programs. The FROC analysis demonstrates that 

YOLOv11n achieves high sensitivity at substantially lower 

FPPI values compared to earlier YOLO variants. At 90% 

sensitivity, YOLOv11n reduces FPPI by approximately 34% 

and 49% relative to YOLOv8n and YOLOv5n, respectively. 

This reduction directly translates to fewer unnecessary visual 

inspections per examination, enhancing radiologist trust and 

facilitating integration into routine CAD-assisted 

mammography screening 

 

D.  Practical Implications   

Based on the results, YOLOv11n shows significant 

promise to be integrated within the clinical setting. In 

addition to the results obtained, YOLOv11n has notable 

inference speed and has less computational demands. This 

suggests that it may be operational within the PACS/RIS 

network as support for radiologists at the point of care during 

their daily imaging analysis. Furthermore, the model’s 

efficiency opens the possibility of being configured for 

remote imaging units, which are primarily low-resource. 

While clinical validation studies are a must, the efficiency of 

models like YOLOv11n suggests that such models could 

beneficially improve the detection of lesions and the support 

of workflows in tandem with real clinical use. 

   

E. Model Interpretability and Clinical 

Trustworthiness 

The visual interpretability analysis provides critical 

evidence that YOLOv11n does not behave as a black-box 

detector. Grad-CAM++ visualizations confirm that the 

model’s predictions are primarily driven by diagnostically 

relevant features such as lesion margins, spiculation patterns, 

and microcalcification clusters. The absence of strong 

activations over background tissue or pectoral muscle 

regions supports the clinical validity of the learned 

representations. 

Such interpretability is essential for clinical adoption, as it 

enhances radiologist trust and facilitates integration into 

CAD-assisted diagnostic workflows. These findings further 

strengthen the generalizability and robustness claims of 

YOLOv11n in mammographic lesion detection. 

 

F. Limitations   

Several key limitations affect the findings from the current 

study. First, there were only experiments on the VinDr-

Mammo dataset that included a specific subset of the 

population as well as a specific imaging protocol; therefore, 

the findings may be difficult to generalize to a wider clinical 

population. Second, the study was done with a focus on 2D 

mammography alone and did not integrate with ultrasound, 

MRI, digital breast tomosynthesis, or other complementary 

modalities. Third, even if there was adequate model 

performance, the model does not have interpretability, which 

plays a key role in fostering trust from clinicians as well as 

the seamless integration of the model within clinical 

diagnostic pathways. 

G.  Future Work 

Examining performance on heterogeneous imaging 

systems and multi-institutional datasets would enhance 

cross-domain robustness. Characterizing lesions could also 

be improved further by the inclusion of DBT and ultrasound 

within the framework of multimodal learning. For clinical 

interpretability, integrating explainable AI techniques like 

Grad-CAM and other attention-based visualizations would 

be invaluable. Moreover, privacy-preserving techniques 

such as federated learning could enable collaboration on 

multi-center models while maintaining the privacy of the 

patients. 

 

V. Conclusions 

This study presented a systematic evaluation of modern 

YOLO architectures for automated breast lesion detection in 

digital mammography. Among the evaluated models, 

YOLOv11n consistently achieved the best balance between 

detection accuracy, sensitivity at low false-positive rates, and 

computational efficiency, demonstrating its suitability for 

real-time clinical deployment. 
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The results indicate that the proposed framework can 

effectively support radiologists as a computer-aided 

detection tool, particularly in high-throughput screening 

environments. The model’s robust performance under cross-

dataset evaluation and its compatibility with resource-

efficient inference settings further highlight its potential for 

scalable integration into clinical PACS-based workflows and 

edge-device deployments. 

For future work, we suggest to focus on large-scale multi-

center validation, multimodal data integration, and 

prospective clinical studies to further assess the impact of 

AI-assisted detection on early breast cancer detection 

outcomes. 

 

REFERENCES  

[1] Fatima FS, Jaiswal A, Sachdeva N. Lung Cancer Detection 

Using Machine Learning Techniques. Crit Rev Biomed Eng. 

2022;50(6):45-58. PMID: 37082976. 

[2] Wajeed MA, Tiwari S, Gupta R, Ahmad AJ, Agarwal S, 

Jamal SS, Hinga SK. A Breast Cancer Image Classification 

Algorithm with 2c Multiclass Support Vector Machine. J 

Healthc Eng. 2023 Jul 8;2023:3875525. doi: 

10.1155/2023/3875525. PMID: 37457494; PMCID: 

PMC10349674. 

[3] Singh, H., Rana, A. K., Giri, J., Shah, M. A., Mallik, S., & 

Sathish, T. (2024). Automatic machine learning model for 

enhanced partition and identification of breast disorders in 

breast MRI scan. Computer Methods in Biomechanics and 

Biomedical Engineering: Imaging & Visualization, 12(1). 

https://doi.org/10.1080/21681163.2024.2378734. 

[4] A G B, Srinivasan S, D P, P M, Mathivanan SK, Shah MA. 

Robust brain tumor classification by fusion of deep learning 

and channel-wise attention mode approach. BMC Med 

Imaging. 2024 Jun 17;24(1):147. doi: 10.1186/s12880-024-

01323-3. PMID: 38886661; PMCID: PMC11181652. 

[5] Mohit K, Gupta R, Kumar B. Computer-Aided Diagnosis of 

Various Diseases Using Ultrasonography Images. Curr Med 

Imaging. 2023 Mar 6. doi: 

10.2174/1573405619666230306101012. Epub ahead of print. 

PMID: 36876845. 

[6] Debsarkar SS, Aronow B, Prasath VBS. Advancements in 

automated nuclei segmentation for histopathology using you 

only look once-driven approaches: A systematic review. 

Comput Biol Med. 2025 May;190:110072. doi: 

10.1016/j.compbiomed.2025.110072. Epub 2025 Mar 25. 

PMID: 40138968. 

[7] Jocher G, et al.: YOLOv5: A state-of-the-art real-time object 

detector. Ultralytics Technical Report. 2020. 

[8] Ultralytics Team.: YOLOv8: Next-generation YOLO 

architecture. Ultralytics Technical Report. 2023. 

[9] Wang CY, Bochkovskiy A, Liao HY. YOLOv7: Trainable 

bag-of-freebies sets new state-of-the-art for real-time object 

detectors. arXiv preprint. 2022; arXiv:2207.02696. 

[10] Nguyen HT, Nguyen HQ, Pham HH, Lam K, Le LT, Dao 

M, Vu V. VinDr-Mammo: A large-scale benchmark dataset for 

computer-aided diagnosis in full-field digital mammography. 

Sci Data. 2023 May 12;10(1):277. doi: 10.1038/s41597-023-

02100-7. PMID: 37173336; PMCID: PMC10182079. 

[11] Dai W, Woo B, Liu S, Marques M, Engstrom C, Greer PB, 

Crozier S, Dowling JA, Chandra SS. CAN3D: Fast 3D medical 

image segmentation via compact context aggregation. Med 

Image Anal. 2022 Nov;82:102562. doi: 

10.1016/j.media.2022.102562. Epub 2022 Aug 9. PMID: 

36049450. 

[12] Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso 

MJ, Cardoso JS. INbreast: toward a full-field digital 

mammographic database. Acad Radiol. 2012 Feb;19(2):236-48. 

doi: 10.1016/j.acra.2011.09.014. Epub 2011 Nov 10. PMID: 

22078258. 


