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Early detection of breast cancer is critical for improving patient survival; however, accurate
interpretation of digital mammography remains challenging due to dense breast tissue,
overlapping anatomical structures, and low-contrast lesions. Recent advances in deep
learning particularly object detection frameworks from the YOLO family; have shown
promise for automated lesion detection. Nevertheless, systematic and controlled
comparisons of contemporary YOLO architectures in mammography remain limited.

This study presents a rigorous comparative evaluation of three lightweight YOLO variants
YOLOv5n, YOLOvV8n and YOLOv11n for automated breast lesion detection in digital
mammography. Experiments were conducted on the VinDr-Mammo dataset comprising
over 20,000 expert-annotated mammograms. To ensure fairness and reproducibility, all
models were trained under identical conditions using a clinically validated preprocessing
pipeline, including Contrast_imited adaptive histogram equalization (CLAHE), bilateral
filtering and safety preserving data augmentation. A patient wise five-fold cross validation
strategy was employed.

Model performance was assessed using lesion level metrics including mean average
precision, precision, recall, and Fl-score, alongside image level receiver operating
characteristic and precision—recall analyses.

While all models showed good performance, YOLOv1ln outperformed all the other
models, attaining an mAPo.s of 68.28% and mAPo.s:0.95 0f 40.82%, which is 5.4% and 9.2%
better than YOLOv8n and YOLOvS5n, respectively. YOLOv11n also displayed superior
performance metrics, achieving better sensitivity (0.69) and precision (0.73) especially on
small and slightly contrast lesions, all while achieving real-time performance at 92 fps and
lower GPU memory usage. The results represent the best available performance and
document an increase in accuracy and efficiency for the clinically actionable Al-based CAD
systems.
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I. Introduction

Despite advancements in diagnostic imaging techniques,
breast cancer continues to challenge healthcare organizations
globally due to its prevalent complicated diagnostic
imaging[1]. Digital mammography is the main technique
recommended to diagnose breast cancer early and, most
importantly, diagnose lesions before they are symptomatic
[2]. However, the precise identification of subtle, small, and
low-contrast abnormalities is still problematic due to
overlapping glandular structural abnormalities, varying
levels of image noise, and wide variation in breast density.
There are inconsistent abnormalities that are also interpreted
as missing, adding to the false/ positive- and false negative-
rate in varying levels of breast density [3]. Since the
prognosis of the patient is worsened, the treatment gap also
raises the cost of the interventions; the necessity to increase
the precise measurement of patient outcomes is the enhanced
diagnostic imaging of the interpretive mammography [4].

CAD systems provide invaluable assistance for
radiologists through objective and automated detection of
anomalous areas in medical images. The rapid advancements
of artificial intelligence especially deep learning have
revolutionized automated medical imaging through real-time
feature extraction and classification of complex images [5].
Within this framework, deep learning object detection
models, within the YOLO family of algorithms, have
outstanding efficacy and real-time localization for different
image modalities [6]. Their single-shot detection and high-
speed inference cut down processing time and improve the
accuracy of real-time CAD systems.

While there has been progress, there are still issues that
need to be addressed. Previous research has studied the
image classification and image segmentation tasks that are
not localized to specific tumor borders. Also, there have been
few direct comparisons of the state of the art YOLO
architectures. The most recent models, YOLOVS8 and
YOLOVI11, include more advanced backbones, better
feature fusion architectures, and more powerful detection
heads yielding better accuracy and performance compared to
models within the same family [7-9]. However, there has yet
to be a thorough assessment of the models in the detection of
lesions in mimeographs. This absence of study is critical to
furthering understanding of the most appropriate model to be
used for CAD systems in the clinical environment, especially
with the balance of accuracy, generalization and real-time
processing.

To address these gaps, this study presents, to the best of
our knowledge, the first systematic comparative evaluation
of three representative YOLO architectures YOLOVS,
YOLOVS, and the latest YOLOv11 for automated breast
cancer detection in full-field digital mammography. Using
the public VinDr-Mammo dataset[10], all models were
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trained in the same procedure with a consistent training
preparation pipeline and preprocessing steps consisting of
Contrast-Limited ~ Adaptive  Histogram  Equalization
(CLAHE) and bilateral filtering for contrast enhancement
and noise reduction prior to training. This study assesses the
models and benchmarks them using mean Average Precision
(mAP) and recall to determine the overall performance for
detection in order to recommend the most suitable for (real-
time) integration within a CAD system.

The continuation of this paper will be completed as
follows: Section 2 outlines the datasets, model architectures,
implementation strategies, and training procedures. Section
3 provides the description of the analysis of comparisons.
Section 4 gives a comprehensive description of the results
and discusses the clinical importance and the limitations of
the study. Finally, Section 5 closes with the summary of the
study and suggestions related to the further exploration of
strong and clinically useful Al systems for computer-aided
systems for breast cancer detection

1. Methodology

A.  Study Design

In order to assess the functionality of the three
contemporary YOLO models (YOLOv5n, YOLOVS8n,
YOLOvVI11n), this study was designed as an experimental,
quantitative, and comparative assessment of the three
models' architectures in the automated detection of breast
lesions in full-field digital mammography (FFDM). To
facilitate reproducibility of results and unbiased comparative
analysis of the models' architectures, all models were trained
within the same framework.

The methodological path consisted of the following four
steps:

1. Acquisition of the dataset and analysis of the
annotations

2. Data preprocessing, augmentation, and clinical safety

3. Uniform training of the YOLO models and cross-
validation

4. Evaluation of the models, performance of statistical
tests, and assessment of the applied computational resources

The first objective was to identify the YOLO model
variant that achieved the greatest level of operational
efficiency, reliability, and accuracy in combination with the
least level of lag in the system in order to be implemented in
routine clinical practice as part of a computer-aided detection
(CAD) system.

B. Dataset Description

The dataset known as VinDr-Mammo consists of over
20,000 mammograms compiled from various CC and MLO
angles. The VinDr-Mammo dataset used in this study
corresponds to version 1.0. Images labeled as BI-RADS 0
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(incomplete assessments) were excluded to avoid ambiguity
in ground-truth definition and to ensure annotation reliability
across all folds.

Each mammogram contains expert bounding box
annotations that:

1. Mass

2. Calcification

3. Architectural distortion

4. Asymmetry

Expert annotations were subjected to a double reading of
the protocol supervised by a radiologist with extensive
experience.

Definitions of Classes in This Study

Here, to minimize bias, we did not differentiate the lesions
for the purposes of this study and instead consolidated all
lesion types into one classification as a single ‘lesion’ due to
the prevalence of this methodology in the literature for CAD
detectors.

Format of the Labeling

The bounding boxes have been represented in the
normalized YOLO format for all bbox details including:
(x_center, y_center, width, height) and all of these were
conducted in the range of [0, 1]. The annotations have been
verified across the folds were consistent in the bounding
boxes. Original annotations provided in absolute pixel
coordinates (x_min, y min, X_max, y max) were converted
into the normalized (x_center, y center, width, height)
YOLO format to ensure consistency across all training folds.

Dealing with Class Imbalance

In order to counter the existing imbalance between the
benign, malignant, and background annotations, numerous
corrective methods were implemented. These were class
balanced sampling during training, increased loss weighting
for malignant lesions (weight factor = 1.5), and adding a
focal loss term in the classification branch of YOLOv8n and
YOLOvlln to address the under-detection of malignant
cases.

C. Data Splitting
A 5-fold patient-independent cross-validation scheme was
used.
For each fold:
* 80% training
* 10% validation
* 10% testing
CC and MLO views belonging to the same patient were
always assigned to the same subset.
This approach ensures robust generalization and unbiased
evaluation across demographic and imaging variations.

D. External Validation Protocol
To evaluate the generalizability of the proposed YOLO-
based detection framework and assess its robustness against
domain shift, an external validation experiment was
conducted using the INbreast dataset(12).
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The INbreast dataset consists of high-resolution full-field
digital mammograms acquired using different imaging
devices, acquisition protocols, and population characteristics
compared to VinDr-Mammo. These differences introduce a
realistic domain shift in terms of image contrast, noise
distribution, lesion appearance, and annotation style, thereby
providing a rigorous test of cross-domain generalization.

For this external validation, the YOLOv5n, YOLOvVSn,
and YOLOvlIn models were evaluated exclusively in
inference mode using the weights trained on VinDr-Mammo.
No fine-tuning, retraining, or domain adaptation was applied
to the INbreast dataset. This design choice ensures that the
observed performance reflects the intrinsic generalization
capability of the learned representations rather than dataset-
specific optimization.

All preprocessing steps, confidence thresholds, and post-
processing configurations were kept identical to those used
in the primary evaluation to guarantee methodological
consistency. Performance was assessed using lesion-level
detection metrics and clinically relevant false-positive
measures.

E. Preprocessing Pipeline
A clinically validated preprocessing pipeline was applied:
v CLAHE:
Clip limit = 2.5, tile size = 8§x8

v Bilateral Filtering:
Diameter = 13, cColor = 75

v/ Normalization & Resizing:

Images resized to 1024x1024, letterboxed to preserve
aspect ratio

Pixel intensities normalized to [0,1].

¢ Clinically-Safe Augmentation:

* Rotations £10°

* Horizontal flip

* Brightness/contrast shift +15%

* Gaussian noise 6=0.01

» Mild cropping <4%

* scaling 0.95-1.05

Mosaic and Mix-up were intentionally excluded, as these
distort lesion morphology and are discouraged in medical
detection tasks.

F. YOLO Architectures Evaluated

Evaluation of YOLO Architectures

Three nano architectures have been evaluated given:

YOLOv5n: CSP-Darknet backbone with anchor-based

YOLOv8n: Decoupled detection head, BiFPN-like neck,
anchor-free

YOLOvlln: C2f backbone, With RT-DETR inspired
refinement head, enhanced DFL and DIoU loss.

The nano variants (v5n, v8n, v11n) were selected for their
incredibly small parameter counts and ability to perform
real-time inference, allowing for their deployment in clinical
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CAD systems with limited computational capacity and fast
processing requirements.

TABLE 1. Comparative architectural characteristics of
YOLOv5n, YOLOvV8N, and YOLOv11n used in this study.

Feature / YOLOYS | yoLOvSn YOLOvl1n
Property n
Anchor-
Model Type based Anchor-free Anchor-free
Enhanced
Detection Coupled Decoupled decoupled head
Head head head (RT-DETR-
inspired)
CSP- Cofbased | mproved C2f+
Backbone RepViT-like
Darknet Backbone
blocks
Improved BiFPN
N F"eature PANet BiFPN-like + dynamic feature
Fusion .
routing
Input
Resolution 1024x102 1024x1024 1024x1024
4
(study)
Number of
Parameters (n- ~1.9M ~3.2M ~3.IM
version)
FLOPs @ ~4.5 ~8.7
640x640 GFLOPs GFLOPs ~8.2 GFLOPs
Yes
Anchor Usage (manual No No
priors)
Loss Functi BCE + BCE + DFL BCE + Enhanced
0ss Functions GloU +CloU DFL + DloU
High Best accuracy—
Lightweig accuracy + speed tradeoft,
Strengths ht baseline fast improved small-
inference lesion detection
L°7’V.e T Moderate . .
precision, . Slightly heavier
Weaknesses computation
older than v5
. al load
design

G. Architectural Ablation Design

To rigorously analyze the sources of performance
gains observed in YOLOv11n, a two-level ablation study
was designed to disentangle the individual contributions
of  preprocessing  strategies and  architectural
enhancements. The ablation framework isolates
improvements arising from (i) preprocessing alone and
(i) architectural modifications independent of
preprocessing.

At the preprocessing level, standardized image
enhancement techniques including CLAHE, bilateral
filtering, and clinically safe data augmentation—were
applied to baseline YOLO architectures to quantify their
isolated impact. At the architectural level, selective
components of YOLOv11n were systematically removed
or replaced while preserving identical training conditions
and preprocessing pipelines.

Specifically, the following ablation variants were
evaluated:

YOLOv8n + preprocessing: to measure gains
attributable solely to preprocessing.

YOLOvlln without enhanced SPPF module: to
assess the contribution of advanced multi-scale context
aggregation.
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YOLOv11n without C2f architectural improvements:
reverting to earlier backbone blocks to evaluate feature
extraction gains.

Full YOLOvlln pipeline: incorporating both
optimized preprocessing and complete architectural
enhancements.

All ablation variants were trained and evaluated
under identical hyperparameters and cross-validation
protocols to ensure fair comparison. Performance
differences were assessed using lesion-level mAP and
recall metrics to identify the dominant contributors to
detection accuracy improvements.

H. Training Configuration
All models were trained using:
e Python 3.10
e PyTorch 2.1
o Ultralytics 8.2.0
* NVIDIA RTX 3090 (24GB VRAM)
e Ubuntu 22.04

Hyperparameters

e Epochs: 200

e Optimizer: AdamwW

e LR =0.002

e Scheduler: Cosine Annealing
e Batch size = 16

o Weight decay = 0.0005

e Early stopping = 20 epochs

e Gradient clipping: Norm = 1.0

Loss Functions

e YOLOvVSN: BCE + GloU

e YOLOvV8n: BCE + DFL + CloU

e YOLOv11n: BCE + Enhanced DFL + DloU

Focal loss term was selectively applied to mitigate

malignant under-detection.

G. Post-processing

A consistent NMS configuration was applied:
Confidence threshold = 0.25

loU threshold (NMS) = 0.45 (standard Ultralytics

setting)
Class-agnostic NMS = Disabled
Max detections per image = 300

Soft-NMS was evaluated but not used during final

comparison to maintain fairness across models

I. Evaluation Metrics
Lesion-level detection metrics:
(] mAPo.s
e mAPo.5:0.05
e Precision
e Recall
e F1-score
¢ ROC/PR Curves

Since YOLO performs detection, ROC and PR curves were

computed at image-level, where:

An image was considered positive if at least one lesion

prediction exceeded confidence threshold 0.25.

J. Free-response ROC (FROC) Analysis
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In addition to mean Average Precision (mAP), a Free-
response Receiver Operating Characteristic (FROC) analysis
was conducted to better reflect clinical diagnostic
performance. FROC curves evaluate lesion-level sensitivity
as a function of the average number of false positives per
image (FPPI), which is a clinically relevant metric for
computer-aided detection systems. Sensitivity was reported
at predefined FPPI levels of 0.5, 1, and 2 false positives per
image.

K. Statistical Analysis

Results expressed as mean + standard deviation across 5

folds

Paired t-test applied for YOLO model comparisons

Analysis performed using SciPy 1.11.4 & NumPy 1.26.2

L. Explainability Analysis

To address the interpretability requirements of deep
learning—based Computer-Aided Detection (CAD)
systems in oncology, an explainability analysis was
conducted using Grad-CAM++ and Eigen-CAM
techniques. These methods were applied to the backbone
feature maps of the YOLO models to generate class-
discriminative localization maps corresponding to lesion
predictions.

For YOLOv11n, Grad-CAM++ was computed from the
final convolutional layer of the C2f backbone, which
preserves high-level semantic information while retaining
sufficient spatial resolution. The objective of this analysis
was to visually validate whether the model’s predictions
were driven by clinically relevant pathological features
rather than background structures or acquisition artifacts.
The generated activation maps were overlaid onto the
original mammograms to assess model attention with
respect to key diagnostic patterns, including
microcalcification clusters, spiculated lesion borders, and
mass margin irregularities. This visual validation
complements the quantitative evaluation by providing
insight into the decision-making process of the network.

M. Computational Efficiency
Clinical feasibility assessed using:
e inference time (ms/image)
e FPS
e model size
e FLOPs (reported at 640x640, per Ultralytics convention)
e GPU memory usage
All measurements were obtained on identical hardware.

Computational Cost vs Clinical Feasibility

Evaluating model performance is also an exercise in
balancing computational efficiency with real-world clinical
workflow constraints. In large-scale mammography
screening programs, models with long inference times or
high memory consumption become impractical due to the
substantial volume of daily imaging data [11]. Therefore, all
YOLO variants were additionally evaluated with respect to
inference speed, GPU memory utilization, model size, and
frames per second (FPS), using identical hardware
conditions. These measurements allow objective assessment
of whether each architecture is suitable for real-time
deployment, particularly in  low-resource clinical
environments where hardware capacity is limited. The
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results directly inform the feasibility of integrating the model
into routine CAD workflows while ensuring minimal latency
and minimal computational overhead.
In addition to GPU-based evaluation, inference performance
was systematically profiled across heterogeneous hardware
environments to reflect realistic clinical deployment
scenarios. Specifically, model inference was evaluated on
both a high-end GPU (NVIDIA RTX 3090) and standard
CPU platforms, including an Intel Core i7-12700 and an Intel
Xeon Silver 4214, representing common workstation and
hospital server configurations.
To assess the impact of numerical precision on latency and
accuracy, inference was conducted under FP32 and INT8
precision settings. Quantization-aware evaluation was
performed without fine-tuning to simulate edge-device
deployment constraints. For each configuration, inference
latency (milliseconds per image), throughput (frames per
second) and lesion-level mAP were recorded. This
comprehensive profiling enables objective assessment of
computational feasibility for real-time, low-resource, and
PACS-integrated clinical environments.

N. Workflow Overview

Model Training

Dataset Preparation Post-Processing

YOLOvSNn )
‘J YOLOvV8n Non-Maxmum
YOLOV11n Suppression
Dataset cross-validation

+ Patient-level separation
= Preprocessing
+ Augmentation

Performance Metrics

* MAPg5, MAPg s +095

+ Precision

+ Recall

+ Fi-score

- ROC/PR curves

- Statistical significance

Fig. 1. Workflow of the proposed YOLO based CAD system
including preprocessing, training, cross-validation, and
evaluation.

I11. Results

This section reports and compares the performances of
YOLOv5n, YOLOv8n and YOLOvlIn concerning the
lesion- and image-level detection metrics. All metrics are
reported as mean =+ standard deviation calculated over the 5
folds of cross validation.

A. Performance Metrics
All three architectures were trained and validated on the
same settings on the VinDr-Mammo dataset. The overall
quantitative metrics across the evaluated architectures with
respect to mAP, precision, recall, and F1-score are provided
in Table 2.
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TABLE 2. Lesion-level detection performance of YOLO
models (5-fold cross-validation).
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consistently maintains superior performance compared to

Model m{z/f; S m‘?g,o/:):o" Precision Recall sf(};e
YOLOv | 59.10+ | 31.60+ 067+ | o061 | OO
5n 1.8 12 0.02 003 | oo
YOLOv | 6286+ | 3640+ 070+ | oesx | OO
8n 15 1.0 0.02 002 | oo
YOLOv | 6828+ | 4082+ 073+ | ogox [ O
1in 1.4 1.1 0.02 002 | oo

YOLOv5n and YOLOV8N across all reported metrics.

TABLE 3. Cross-dataset evaluation results on the INbreast

With mAP0.5, YOLOv11n had maximum accuracy with a
5.4% and 9.2% improvement over YOLOv8n and YOLOv5n
respectively. YOLOv11n also had the maximum accuracy
improvement. YOLOv1ln showed the best trade-off
between specificity and sensitivity. Some of the differences
were statistically significant. A paired t-test between folds
verified that in mAP and Recall, YOLOvlln had a
significantly higher score than alternative models (p < 0.05).

Training Curves

1.0
= Loss

0.91 — Accuracy
081

0.74
061

Value

054
0.41
0.34

0.24

0.1

0 10 20 30 40 50
Iterations

Fig. 2. Training and validation loss curves for
YOLOV5N, YOLOV8N, and YOLOv11n over 200 epochs.

To further examine the training behavior and
optimization stability of the evaluated architectures, Figure
2 shows the training and validation loss curves across 200
epochs. YOLOv11n exhibits faster convergence and lower
validation loss compared to YOLOv5n and YOLOvV8n,
indicating more efficient feature extraction and reduced
overfitting.

B. Cross-Dataset Evaluation Results

Table 3 presents the cross-dataset evaluation results
obtained by applying the models trained on VinDr-
Mammo directly to the INbreast dataset. As expected, a
moderate performance degradation is observed across all
models due to domain shift effects. However, YOLOv11n

dataset
Dataset Model MAP..s (%) | Recall | FPP1@90%
INbreast | YOLOv5n 52.34 0.57 1.84
INbreast | YOLOv8n 56.92 0.61 1.42
INbreast | YOLOv11n 61.78 0.66 1.08
Despite the absence of fine-tuning, YOLOv1lln
demonstrates  superior  cross-dataset generalization,

achieving the highest mAPo.s and recall while maintaining
the lowest false positives per image at 90% sensitivity.
Compared to YOLOv5n and YOLOv8n, YOLOvlln
reduces FPPI by approximately 41% and 24%,
respectively, indicating improved robustness under
domain shift conditions.

C. ROC and Precision—Recall Analysis

1.0 oo ;
— YoLovlln /

o8} e

2 Positive Rate
=
=
\Y

True
=]
Y

0.2} /i
Fi

ol

0.0 0.2 0. 0.6 0.8 1o
False Positive Rate

Fig. 3. ROC curves for YOLOv5n, YOLOV8n, and
YOLOv11n aggregated at image level across 5-fold cross-
validation

To further assess discriminatory performance beyond
lesion-level mAP, image-level ROC and Precision—Recall
(PR) curves were generated by aggregating detection scores
across all images in each fold. Figures 3 and 4 illustrate the
ROC and PR curves, respectively, for YOLOv5n,
YOLOvV8n, and YOLOv11n.
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As shown in Figure 3, YOLOvlln demonstrates the
steepest ROC curve and achieves the highest AUC-ROC
(0.89), indicating superior ability to distinguish between
positive and negative mammograms across a range of
decision thresholds. Similarly, Figure 4 depicts the PR
curves, where YOLOvV1 1n consistently maintains the highest
precision across varying recall levels. The improved AUC-
PR score (0.73) highlights the model’s enhanced
performance particularly under class-imbalance conditions,
which are common in mammography datasets.

b YOLOVSn

Precision
e £
i
o

0.0 0.2 04 06 0.8 10
Recall

Fig. 4. Precision—Recall curves for YOLOv5n, YOLOV8n, and
YOLOv11n demonstrating sensitivity—precision trade-offs.

TABLE 4. Image-level ROC and PR metrics

Model AUC-ROC | AUC-PR
YOLOv5n 0.81 0.63
YOLOv8n 0.85 0.68

YOLOvlln 0.89 0.73

YOLOvlIn achieved the highest AUC
demonstrating superior discriminatory capability.

(0.89),

D. FROC Analysis

To further assess clinical applicability, FROC curves were
generated for all models by plotting lesion-level sensitivity
against false positives per image (FPPI). As shown in Figure
5, YOLOvIIn consistently achieves higher sensitivity at
lower FPPI levels compared to YOLOvS5n and YOLOVSn,
indicating superior detection capability with fewer false
alarms.

TABLE 5. FROC-based performance comparison at
clinically relevant sensitivity levels

FPPI@80% FPPI@90%
Nilet] Sensitivity Sensitivity
YOLOVSN 1.42 1.98
YOLOv8n 1.08 154
YoLOviin 0.76 102
Fig. 1.0
-~ YOLOV5n
5~ 09 « - YOLOv8n
—a— YOLOV11n

Sensitivity

0.0 0.5 1.0 15 2.0

25 3.0 4.0

False Positives Per Image (FPPI)
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Free-response Receiver Operating Characteristic (FROC)
curves illustrating lesion-level sensitivity versus false
positives per image (FPPI) for YOLOv5n, YOLOvV8n, and
YOLOvl1In. YOLOvIIn maintains higher sensitivity at
lower FPPI levels, demonstrating improved clinical
usability.

E. Qualitative Analysis of the Detection Results

In addition to the results previously discussed, to include
the detection of lesions, YOLOvS5n, YOLOv8n, and
YOLOvlIin model performances on random and
representative  mammograms are shown in Figure 5
YOLOv11n shows the highest accurate localization with the
least false positive occurrences, especially on dense
mammographic tissues and low contrast lesions. YOLOv5n
and YOLOVS8n have missing subtle detections, and although
YOLOv8n showed some increased moderate performance, it
still exhibited high occurrences of false positive box
markings, especially with a scattered appearance. These
results illustrate the robust performance of YOLOvlln
which shows increased performance on even the most
challenging datasets.

YOLOV5n

YOLOv8n YOLOv1in

£

Figure 6. Sample lesion detection results on a difficult
mammographic case. Columns show predictions from
YOLOv5n, YOLOv8n, and YOLOvlln respectively.
YOLOvl1l1n provides the most accurate localization with
fewer false positives, especially in dense glandular regions.

F. Visual Interpretability Results
Figure 7 illustrates representative examples of visual
interpretability results obtained using Grad-CAM++ for
YOLOvlin. Each example consists of three aligned
components: the original mammographic image, the
corresponding lesion detection bounding box, and the Grad-

CAM++ heatmap overlaid on the image.
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The activation maps demonstrate that YOLOvlln
consistently focuses on clinically meaningful regions,
including microcalcification clusters, spiculated lesion
contours, and irregular mass margins. High-response regions
closely align with radiologist-annotated lesion boundaries,
indicating that detections are guided by pathological
characteristics rather than irrelevant background structures.

Importantly, minimal activation was observed over non-
diagnostic areas such as the pectoral muscle, background
tissue, or image borders, supporting the reliability and
clinical plausibility of the model’s predictions.

Original mammogram YOLOv11n Detection Box Grad-CAM+ Heatmap

-

Fig. 7. Visual interpretability analysis of YOLOvIln
using Grad-CAM++.

Representative mammographic cases illustrating (left) the
original image, (center) the predicted lesion bounding box,
and (right) the Grad-CAM-++ heatmap overlay. The model
consistently attends to clinically relevant pathological
features such as microcalcification clusters, spiculated
margins, and mass boundaries, while suppressing
background activations.

G. Computational Efficiency
Inference speed and GPU memory consumption are

essential for clinical deployment.

TABLE 6. Computational efficiency metrics.

Model FPS | GPU Memory (GB) | Model Size (MB)
YOLOv5n 105 3.2 3.7
YOLOv8n 84 4.1 4.8

YOLOvlln 92 3.5 4.2

Conclusions on Efficiency:
e YOLOv11n operates with a remarkable 92 fps.
¢ Regarding YOLOVS8nN, utilization of GPU memory is
14% less.
¢ Hence, integration into CAD solutions is entirely viable.

H. Inference Performance Across Hardware and
Precision Settings
To evaluate the deployability of the proposed models in
real-world clinical environments, inference performance
was benchmarked across GPU and CPU platforms under
multiple numerical precision configurations.

TALE 7. Inference performance across hardware and precision

settings (YOLOv11n)
. . Latency MAPo.s
Device Precision | FPS (ms) (%)
RTX 3090 FP32 78 12.8 68.28
RTX 3090 INT8 115 8.7 67.54
Intel i7-12700 FP32 14 71.4 67.96
Intel i7-12700 INT8 22 45.2 67.31
Intel Xeon
1214 FP32 9 111.3 67.85
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Intel Xeon

4214 INT8 15 66.7 67.08

The results indicate that FP32 and INT8 quantization
substantially reduce inference latency while maintaining
near-identical detection accuracy. Even under CPU-only
deployment, YOLOv1ln preserved clinically acceptable
performance with modest throughput, supporting its use in
resource-constrained environments.

I. Architectural Ablation Results
TABLE 7 summarizes the quantitative results of the
architectural and preprocessing ablation experiments. The
results clearly demonstrate that both preprocessing and
architectural enhancements contribute to performance gains,
with architectural refinements playing the dominant role.

TABLE 8. Architectural and preprocessing ablation results on
VinDr-Mammo

Variant MAPo.s (%) Recall
YOLOvV8n (baseline) 62.86 0.65
YOLOV8n + preprocessing 65.94 0.67
YOLOv11n without
enhanced SPPF 66.12 0.66
YOLQvlln without C2f 64.88 0.65
improvements
YOLOv11n (full pipeline) 68.28 0.69

The effect of preprocessing alone improved mAP by
approximately +3.1%, indicating its effectiveness in
enhancing lesion contrast and suppressing noise. However,
removal of key architectural components from YOLOv11n
resulted in noticeable performance degradation, highlighting
the critical role of backbone and neck refinements in
detecting small and low-contrast lesions.

V. Discussion

This work examined the performances of three YOLO
architectures: YOLOv5n, YOLOv8n, and YOLOv11n in the
context of their automated detection of breast lesions in full-
field digital mammograms, having balanced performances
from the ideal set of metrics in the given experimental
conditions. YOLOV11n has the distinction of being the most
accurate, most the most robust, and the most computationally
efficient, and has, therefore, the strongest overall
performance of the set.

A. Discussion of the Results

YOLOv11n had the best overall performances for the
metrics mAPo.s, mAPo.s:0.0s and was also the highest in recall
and precision. For the improvements in the architecture of
YOLOv11, the focal points are the C2f walkway, the absence
of anchors, the modified decoupled mechanisms for
regression and classification, and the effective feedback for
the efficient aggregation of features from many uneven
layers. YOLOvlIn was able to retain much of the
information formed in lower contrast lesions, and the
outlines of lesions that were marginal were often difficult to
discern, especially the significant structural details.
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Opacities, that were often much smaller in size, were also
particularly problematic to discern and interpret in the
context of breast mammograms.

B. Comparison With Previous Literature

With respect to previously analyzed versions of YOLO in
current literature, such as those by Zhang et al. (2022) using
YOLOVS and those by Chen et al. (2023) using YOLOVS,
YOLOvlln shows enhanced accuracy and speed in
inference concerning the location of lesions. This
corroborates the ongoing hypothesis on the preference of
new, anchor-free, single-stage models as opposed to older,
two-stage, anchor-based models, especially in the case of
small, irregular lesions, as is common in dense breast tissue,
due to the advanced feature pyramid technology.

C. Clinical Relevance

Clinically, YOLOvlln's ease of integration into
mammography CAD systems (with potential clinical
approval) can be justified especially due to its architecture
and inference speed of 92 FPS. The distribution of the model
outputs also suggests the model's potential in assisting
radiologists in screening exams, especially when the exams
are done at a high throughput and during fatigue. The
model's performance is likely to be as consistent as the model
outputs due to the statistical constancy observed in the
different folds of cross validation.

From a clinical perspective, reducing the number of false
positives per image is critical for minimizing radiologist
fatigue and maintaining workflow efficiency in large-scale
screening programs. The FROC analysis demonstrates that
YOLOv11n achieves high sensitivity at substantially lower
FPPI values compared to earlier YOLO variants. At 90%
sensitivity, YOLOv11n reduces FPPI by approximately 34%
and 49% relative to YOLOv8n and YOLOVS5n, respectively.
This reduction directly translates to fewer unnecessary visual
inspections per examination, enhancing radiologist trust and
facilitating  integration into routine CAD-assisted
mammography screening

D. Practical Implications

Based on the results, YOLOvlln shows significant
promise to be integrated within the clinical setting. In
addition to the results obtained, YOLOv1ln has notable
inference speed and has less computational demands. This
suggests that it may be operational within the PACS/RIS
network as support for radiologists at the point of care during
their daily imaging analysis. Furthermore, the model’s
efficiency opens the possibility of being configured for
remote imaging units, which are primarily low-resource.
While clinical validation studies are a must, the efficiency of
models like YOLOv1In suggests that such models could
beneficially improve the detection of lesions and the support
of workflows in tandem with real clinical use.
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E. Model Interpretability and Clinical
Trustworthiness

The visual interpretability analysis provides critical
evidence that YOLOv11n does not behave as a black-box
detector. Grad-CAM++ visualizations confirm that the
model’s predictions are primarily driven by diagnostically
relevant features such as lesion margins, spiculation patterns,
and microcalcification clusters. The absence of strong
activations over background tissue or pectoral muscle
regions supports the clinical validity of the learned
representations.

Such interpretability is essential for clinical adoption, as it
enhances radiologist trust and facilitates integration into
CAD-assisted diagnostic workflows. These findings further
strengthen the generalizability and robustness claims of
YOLOvV11n in mammographic lesion detection.

F. Limitations

Several key limitations affect the findings from the current
study. First, there were only experiments on the VinDr-
Mammo dataset that included a specific subset of the
population as well as a specific imaging protocol; therefore,
the findings may be difficult to generalize to a wider clinical
population. Second, the study was done with a focus on 2D
mammography alone and did not integrate with ultrasound,
MRI, digital breast tomosynthesis, or other complementary
modalities. Third, even if there was adequate model
performance, the model does not have interpretability, which
plays a key role in fostering trust from clinicians as well as
the seamless integration of the model within clinical
diagnostic pathways.

G. Future Work

Examining performance on heterogeneous imaging
systems and multi-institutional datasets would enhance
cross-domain robustness. Characterizing lesions could also
be improved further by the inclusion of DBT and ultrasound
within the framework of multimodal learning. For clinical
interpretability, integrating explainable Al techniques like
Grad-CAM and other attention-based visualizations would
be invaluable. Moreover, privacy-preserving techniques
such as federated learning could enable collaboration on
multi-center models while maintaining the privacy of the
patients.

V. Conclusions

This study presented a systematic evaluation of modern
YOLO architectures for automated breast lesion detection in
digital mammography. Among the evaluated models,
YOLOv11n consistently achieved the best balance between
detection accuracy, sensitivity at low false-positive rates, and
computational efficiency, demonstrating its suitability for
real-time clinical deployment.
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The results indicate that the proposed framework can
effectively support radiologists as a computer-aided
detection tool, particularly in high-throughput screening
environments. The model’s robust performance under cross-
dataset evaluation and its compatibility with resource-
efficient inference settings further highlight its potential for
scalable integration into clinical PACS-based workflows and
edge-device deployments.

For future work, we suggest to focus on large-scale multi-
center validation, multimodal data integration, and
prospective clinical studies to further assess the impact of
Al-assisted detection on early breast cancer detection
outcomes.
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