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Hyperspectral image (HSI) classification is one of the most important processes on these 

images, which artificial intelligence (AI) techniques have recently achieved significant 

success in this process. Data representation using a low-dimensional subspace is critical 

in classification task of HSI. By employing the Low-Rank Representation (LLR) 

approach, low-dimensional representations from data can be effectively extracted. Since 

this method neglects local information, the extracted features are not sufficiently rich and 

informative for classification. This paper proposes a machine learning method for 

hyperspectral image classification, which involves employing the Structure of the Data 

Regularized LLR with Dictionary Learning (SDLRRDL) model. Our AI-based model, 

SDLRRDL, presents an approach for learning data structures through a low-rank and 

sparse representation. Also, to leverage structural data information, a penalty is added to 

the low-rank representation model. The method can create similar features for data of the 

same class by combining image class signature and spectral-spatial information. 

Moreover, image samples are represented through a linear combination of dictionary 

atoms. Rich and informative features are extracted through the trained dictionary 

utilizing a training data set that better matches the training content. Then, extracted 

features are classified using the support vector machine with high accuracy. Simulation 

results demonstrate that the proposed method has a superior classification accuracy 

compared to state-of-the-art methods on three popular HSI datasets. The proposed 

method improves the classification accuracy of the state-of-the-art methods more than 

2.13, 0.2, and 0.6 percent on the Indian Pines, Pavia University, and Salinas datasets, 

respectively. 
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I. Introduction 

With advancements in remote sensing, high spectral 

resolution sensors, called hyperspectral sensors, have 

emerged. These sensors make the Earth surface imaging in 

several hundred spectral bands possible and provide more 

details of image classes [1]. The image captured by these 

sensors in several electromagnetic wavelengths is called a 

Hyperspectral Image (HSI). The classification is a 

significant process on the HSI [2]. So far, Various methods 

have been proposed for HSI classification. Recently, 

machine learning methods have been popular in the HSI 

classification. In this regard, numerous Support Vector 

Machine (SVM) methods have been developed [3]. SVM is 

a commonly used classifier in most classification problems, 

achieving significant success in HSI classification. 

Furthermore, deep learning is recognized as a formidable 

tool for hyperspectral image processing [4-6]. 

Hyperspectral images contain valuable information across 

different wavelengths for the classification task. Methods 

outlined in [7] and [8] employ spectral information to 

perform classification. Although rich spectral information 

for each pixel greatly aids in HSI classification, solely 

utilizing spectral information is insufficient. The majority of 

pixels surrounding a central pixel are typically of the same 

class. Thus, combining spectral and spatial information 

improves the classification performance. Using spectral and 

spatial information simultaneously improves classification 

performance and causes notable success in HSI classification 

[9]. In [10], the authors propose a Spatial Spectral 

Transformer Network (SSTN) for HSI classification. The 

SSTN method employs attention and association modules as 

spectral-spatial modules for feature extraction. Combining 

these modules with a structured factorized search framework 

forms the SSTN to carry out HSI classification. In [11], a 

Groupwise Separable Convolutional Vision Transformer 

(GSC-ViT) HSI classification method is proposed as a light 

vision transformer network. GSC-ViT employs a group-wise 

separated convolutional module to reduce the number of 

convolutional kernel parameters and extract local spectral-

spatial information from the hyperspectral images. Also, a 

group-wise separated multi-head associate module is utilized 

in the vision transformer network. In [12], the authors 

present the state-space morphological model (SSMM) that 

exploits morphological analysis to calculate the structure and 

shape of data and extract spatial and spectral features from 

HSI. Then, they exploit a multi-head self-attention and a 

state-space model for HSI classification. 

Hyperspectral images are represented as spectral vectors 

across different wavelengths, containing high amounts of 

information, and contaminated with noise. Thus, sparse 

representation approaches can be highly effective in 

processing the HSI. Accordingly, HSI classification through 

sparse representation has gained popularity in recent years. 

These methods typically represent samples as a linear 

combination of a few dictionary elements [13]. The authors 

in [14] utilize spatial information to achieve suitable results. 

They propose the Joint Robust Sparse Representation 

Classifier (JRSRC) method. This method represents 

neighboring pixels of a pixel using a sparse linear 

combination of several training samples. In [15], the authors 

present a Class-Dependent Sparse Representation Classifier 

(cdSRC) that utilizes distance and correlation between 

samples. They combine a sparse representation classifier 

with a k-nearest neighbor classifier, and propose a class 

membership function that utilizes Euclidean distance 

information. Despite the suitable results, sparse 

representation classification methods are only able to take 

the local data structure into account.  

An effective approach to extract features with lower 

dimensions is Low-Rank Representation (LRR) model [16]. 

The primary concept of the LRR is to utilize the most 

parsimonious information to approximate and reconstruct 

signals [17-19]. This approach seeks to minimize the rank of 

each sample by leveraging information across the entire 

image dataset, essentially taking the global data structure 

into account. HSI is captured by sensors as signals and 

represented by spectral vectors across different frequencies. 

The images contain noise and high amounts of information. 

Thus, they can be represented sparsely with fewer elements 

and minimal noise. The low-rank representation method 

does not consider the local structure and correlation between 

pixels. Moreover, the features extracted using low-rank 

representations are not highly distinct. Thus, presenting a 

model through combining local and global data structures 

separates the highly distinguishable data by combining low-

rank and sparse representation models [20]. In [21], a Low 

Rank Group Inspired Dictionary Learning (LGIDL) model 

is proposed to extract features from an image using spatial 

information. The authors in [20] combine the geometric 

structure of data with low-rank and sparse representations 

models and apply an appropriate graph. It causes the 

extracted features to be highly distinct and informative. The 

authors in [22] propose a classification approach for HSI 

called the superpixel-wise low-rank approximation-based 

partial label learning (SLAP) method. In this method, the 

low-rank model is combined with the regularized Laplacian, 

and the model is applied to each superpixel. Then, high-

discriminant features are extracted using the affinity graph 

extraction. 

Dictionary learning has a critical role in numerous 

research fields, including classification, compression, 

denoising, and super-resolution. Dictionary learning helps 

extract valuable information for processing from a large 

amount of redundant and correlated data [23]. A dictionary 

consists of a set of atoms, with each sample expressed as 

their linear combination. This representation scheme extends 

to low-rank methods, where samples are constructed by 

combining linear combinations of dictionary members. 
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Selecting an appropriate dictionary has a significant impact 

on extracting distinctive features from HSI. Most of the low-

rank representation approaches consider all training samples 

as the dictionary. These atoms contain redundant 

information, which increases the computational complexity. 

Dictionary learning methods include Structured dictionaries 

based on mathematical models [24-26] and Trained 

dictionaries based on training samples [27-29]. Table I 

shows a comparison of prior works. 

As previously mentioned, the majority of neighboring 

pixels of a pixel are from a similar class, and combining their 

spectral and spatial information improves classification 

accuracy. Extracting spatial-spectral information enhances 

the HSI classification performance. The neighboring pixel is 

employed to extract its spatial information. In this paper, we 

employ a shape-adaptive method to calculate pixel 

neighborhoods. Unlike methods that utilize fixed-size 

patches, this approach uses an adaptive size to select pixel 

neighborhoods in each direction. Therefore, the 

neighborhood is determined based on the spatial information 

of the pixels. The spectral-spatial information is extracted 

using statistical moments of the adaptive neighborhoods. 

The proposed method presents an optimization algorithm 

for learning data structure employing a low-rank, sparse 

representation and appropriate dictionary learning. This 

method uses a combination of image class information and 

 

TABLE I Comparison of prior works  
Study method Key Innovation limitation Dataset 

Camps et al. [3] 

Support 

vector Machine 

(SVM) 

Finding the optimal 

decision boundary between 

classes 

Sensitive to noisy data, overlapping 

Classes, and Not Suitable for very large 

datasets 

Indian Pines 

Li et al. [14] JRSRC 
Combines SRC+ spectral 

and spatial  information 
Ignores global structure 

Indian Pines, Pavia 

University 

Liu et al. [16] LRR Global data modeling Poor local feature extraction 
Indian Pines, Pavia 

University, Salinas 

He et al. [21] LGIDL Super-pixel segmentation 

Degradation in global structure 

preservation and inaccurate local region 

definitions for LRR in object edges 

Indian Pines, Pavia 

University, Salinas 

Yang et al. [22] SLAP 
Laplacian graph 

regularized LRR 

The need to build an appropriate adjacency 

graph and computational complexity in 

large-scale data 

Indian Pines, Salinas 

Ahmad et al. [12] SSMM State space models 
Low accuracy for limited and noisy training 

samples 

Indian Pines, Pavia 

University 

Zhong et al. [10] SSTN 
Spatial-spectral attention 

network 

Low accuracy for limited and noisy training 

samples 

Indian Pines, Pavia 

University 

Zhao et al. [11] GSC-ViT 

Integrating the grouping 

strategy characteristics into 

the transformer network 

Low accuracy for limited and noisy training 

samples 

Indian Pines, Pavia 

University, Salinas 

Proposed 
SDLRRDL 

(AI hybrid) 

Combines LRR+ 

Sparse+ dictionary learning 

+spectral and spatial 

information 

Computationally intensive 
Indian Pines, Pavia 

University, Salinas 

takes the data structure into account to create similar features 

for data from the same class. To this end, training sample 

information is combined with the model as a regularization 

term for dictionary learning. In contrast to the methods that 

employ fixed dictionaries or utilize the entire data as 

dictionaries for data reconstruction, the proposed method 

uses a set of training samples as dictionary components. This 

approach applies dictionary learning algorithms and utilizes 

appropriate constraints to extract highly distinctive features. 

Subsequently, a support vector machine classifies the 

features with high accuracy. We call the proposed AI-based 

method the Structure of the Data Regularized LLR with 

Dictionary Learning (SDLRRDL) method. 

The following sections organize the paper. The 

SDLRRDL method is discussed in Section II of the paper. In 

Section III, the optimization algorithm of the SDLRRDL 

method is outlined. Section IV examines the performance of 

the SDLRRDL approach, and Section V presents the 

conclusions of this article. 

  

II. The Proposed SDLRRDL Method 

The pixels in close proximity to one another in remote 

sensing images are typically composed of the same 

materials. Therefore, the informative features are extracted 

by exploiting the information of neighboring pixels. The 

proposed method employs a shape-adaptive approach to 

determine the neighborhood of each pixel across different 

directions. The spectral and spatial features are then 

extracted using information from neighboring pixels. 
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Hyperspectral images are represented as spectral vectors 

across different frequencies. Thus, HSI contains valuable 

information contaminated with noise. Therefore, sparse 

representation methods can be quite effective in processing 

HSI. Furthermore, the high spectral similarities of HSI data 

are related to the low-rank characteristic. It is important to 

note that sparse representation considers the data's local 

structure, while Low-rank representation takes its global 

structure into account. 

In the proposed method, we combine the low-rank and the 

sparse representation models to extract features, employing 

spectral-spatial image information. This approach represents 

the image sample through a linear combination of dictionary 

atoms. Features with similar representation structures for 

data from the same classes can be created by adding a 

structure penalty term as a regularization term to the 

objective function and utilizing image class information. The 

proposed method performs dictionary learning using a set of 

training data, presenting a dictionary that better matches the 

training content. Ultimately, the extracted features are 

classified in a supervised manner using a support vector 

machine classifier. The subsequent section outlines the low-

rank and sparse representation model combined with a 

structure penalty term to apply structural data features and 

dictionary learning to the model. 

 

A. Extracting Spatial-Spectral Feature from 

Adaptive Neighbor  

The hyperspectral image consists of the 

𝑌𝜖𝑅𝑑×𝑛1×𝑛2 dataset with 𝑛1 × 𝑛2 pixels and 𝑑 bands. Each 

pixel’s data is considered as a vector across different spectral 

bands. Thus, the hyperspectral image can be considered as 

the [𝑦1. 𝑦2. … . 𝑦𝑛]𝜖𝑅𝑑×𝑛 matrix. In this context, 𝑛 indicates 

pixels number, and column 𝑦𝑖 represents the 𝑖th pixel’s 

spectral vector. The adjacent pixels in images are typically 

composed of the same materials. Therefore, valuable 

features can be extracted by using the information of 

neighboring pixels. In this paper, we employ a shape-

adaptive method for pixel neighborhood selection [30]. This 

method considers a set of directional convolution kernels 

with different sizes across eight different directions 

{
𝜋

4
,

𝜋

2
,

3𝜋

4
, … ,2𝜋} relative to the central pixel. These kernels 

are then applied to the first principal component of the HSI 

to determine the pixel’s neighborhood. The set of 

neighboring pixels of 𝒚𝑖 is denoted as 𝒩𝑖 , which includes the 

pixel 𝒚𝑖  as well. The statistical information of each pixel’s 

neighborhood is employed to extract its spectral-spatial 

information. The majority of the neighboring pixels are from 

similar classes. Calculating these moments provides useful 

information regarding their corresponding class. To this end, 

we employ the first and second moments of neighboring 

pixels as follows: 

(1) 

𝝁𝑖 =
1

|𝒩𝑖|
∑ 𝒚

𝒚∈𝒩𝑖

 

[𝝈𝑖
2]𝑗 =

1

|𝒩𝑖|
∑ ([𝒚]𝑗 − [𝝁𝑖]𝑗)

2

𝒚∈𝒩𝑖

. 

In this context, |𝒩𝑖| indicates the number of elements in the 

set 𝒩𝑖 , and [𝒚]𝑗 denotes the j-th element of the vector 𝒚. 

Thus, the spatial-spectral feature of the 𝒚𝑖 pixel is calculated 

as follows: 

(2) 𝒙𝑖 = [
𝝁𝑖

𝝈𝒊
𝟐]. 

Hence, 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝑛] serves as a spatial-spectral HSI 

characteristic. 

 

B. The Proposed Model  

This section involves utilizing low-rank representation as 

an efficient technique to obtain a lower-rank structure within 

the data. The rank minimization problem approximates the 

sample matrix with a matrix of lower rank. Generally 

speaking, most valuable signal information is located in a 

subspace with fewer dimensions in high-dimensional data. 

Should the observation matrix become corrupted by noise, it 

is possible to obtain data with minimal noise using the low-

rank matrix denoted by 𝑍 [16]. The data consists of multiple 

subspaces, with each sample expressed by a linear 

combination of dictionary components as 𝑋 = 𝐷𝑍 + 𝐸. In 

this context, the columns of 𝐷 = [𝑑1, 𝑑2, … , 𝑑𝑚]𝜖𝑅𝑑×𝑚 

correspond to a set of dictionary bases, 𝐸 represents the 

model error, and 𝑍 = [𝑧1, 𝑧2, … , 𝑧𝑛] is the low-rank matrix 

representing of 𝑿. Essentially, a dictionary consists of some 

basis atoms that can represent any data related to that 

dictionary as a linear combination of its atoms.  

Thus, the LLR method calculates the low-rank matrix 𝑍 as 

follows: 

(3) min
𝑍.𝐸

𝑟𝑎𝑛𝑘(𝑍) + 𝜆‖𝐸‖0 ,   𝑠. 𝑡.     𝑋 = 𝐷𝑍 + 𝐸, 

where 𝜆 represents a parameter controlling the noise effect. 

 Solving this model, containing the rank function and 𝑙0 

norm, is an NP-hard problem. Thus, the following convex 

model is employed to solve the optimization problem (3): 

(4) 
min

𝑍,𝐸
‖𝑍‖∗ + 𝜆‖𝐸‖1  ,    𝑠. 𝑡.   𝑋 = 𝐷𝑍 + 𝐸, 

where ‖∙‖∗ represents the nuclear norm. This norm is 

equivalent to the summation of singular values, and ‖∙‖1 

represents the sparsity [16]. 

As previously stated, the LLR model takes the global 

structure into account. Consequently, by considering the 

dictionary, we formulate a joint low-rank and sparse 

representation through the following objective function to 

represent the local structure alongside the global structure: 

(5)  

𝑚𝑖𝑛
𝑍.𝐸.𝐷

‖𝑍‖∗ + 𝛽‖𝑍‖1 + 𝜆 ‖𝐸‖1,

𝑠. 𝑡  𝑋 = 𝐷𝑍 + 𝐸, 𝑍 ≥ 0, ∀𝑖  ‖𝑑𝑖‖2 ≤ 1 , 𝑑𝑖 ≥ 0,
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where, 𝛽 and 𝜆 are the parameters balancing the 

regularization sections, while 𝒅𝑖 represents the 𝑖-th atom in 

the dictionary. The 𝒁 ≥ 0 constraint is expressed to correctly 

describe the physical context. Without loss of generality, if 

the samples are sorted according to their classes, the 𝑍 matrix 

will have a block and diagonal structure as follows: 

(6) 𝑍 = [

𝑧1
∗ 0

0 𝑧2
∗ 

⋯
0
0

⋮ ⋱ ⋮
0 0 ⋯ 𝑧𝑐

∗

]. 

In this context, c represents the number of classes, while 

𝑍1 and Z2 represent the submatrices of the feature matrix that 

correspond to train and test samples, respectively. This study 

defines a structured matrix 𝑆 as a constraint on 𝑍, keeping Z 

as close to matrix S as possible, ensuring the structure of 

equation (6) is also maintained for 𝑍1 and Z2 matrices. The 

𝑆 = [𝑆1, 𝑆2] term is composed of two sub-matrices, where S1 

corresponds to the training data and S2 corresponds to the 

test data. It must be noted that S1 utilizes training data 

information. Thus, the structure in equation (6) is maintained 

for 𝑍1. However, it is challenging to obtain a similar structure 

in equation (6) for Z2, as there is a lack of information 

regarding test sample labels. To this end, the following 

similarity measure is employed to generate the S2 matrix. If 

[𝑝𝑖 , 𝑞𝑖] represent the coordinates of the training pixel 𝒙𝒊 and 

[𝑝𝑗 , 𝑞𝑗] represent the coordinates of the test pixel 𝒙𝒋, the 

similarity measure is defined as follows: 

(7) 

𝑑𝑠𝑖𝑗
= ‖𝒙𝑖 − 𝒙𝑗‖

2
, 

𝑑𝑐𝑖𝑗
= √(𝑝𝑖 − 𝑝𝑗)

2
+ (𝑞𝑖 − 𝑞𝑗)

2
, 

𝐷𝑖𝑗 = 𝑑𝑠𝑖𝑗

2 + 𝜁𝑑𝑐𝑖𝑗

2, 

[𝑆2]𝑖𝑗 = {
exp(−𝐷𝑖𝑗),            𝐷𝑖𝑗

2 < 𝛽

0 ,                                𝐷𝑖𝑗
2 > 𝛽,

 

where, 𝑑𝑠𝑖𝑗
 and 𝑑𝑐𝑖𝑗

 represent spectral and spatial 

distances of training and test pixels, respectively, while 𝐷𝑖𝑗 

expresses the spatial-spectral distance of 𝒙𝒊 and 𝒙𝒋 pixels. 

Furthermore, 𝜁 is the coefficient of spatial distance impact 

on the similarity measure. The 𝛽 threshold determines the 

sparsity level of the 𝑆2 matrix. 

Thus, the ‖𝑍 − 𝑆‖𝐹
2  constraint is added to the model to 

impose the block and diagonal form on the 𝑍 matrix. The 

low-rank representation 𝑍 will have an almost similar 

structure to equation (6), with the final proposed model being 

expressed as follows: 

(8) 
𝑚𝑖𝑛
𝑍.𝐸.𝐷

‖𝑍‖∗ + 𝛽‖𝑍‖1 + 𝜆 ‖𝐸‖1 + 𝛼‖𝑍 − 𝑆‖𝐹
2

𝑠. 𝑡 𝑋 = 𝐷𝑍 + 𝐸, 𝑍 ≥ 0, ∀𝑖 ‖𝑑𝑖‖2 ≤ 1 , 𝑑𝑖 ≥ 0,
 

where, 𝛼 is a penalty parameter that controls the 

regularization term. 

 

C. Dictionary Learning  

Dictionary selection is critical in feature extraction. A 

fixed dictionary is ineffective in extracting a representation 

of highly distinctive coefficients in the various classes. Thus, 

the present study employed a dictionary learning method. A 

weakness of the majority of low-rank representation 

methods lies in the fact that they use all image samples as a 

dictionary, which creates atoms with redundant information 

and increases computational complexity. To address this 

issue, the proposed method solely employs training samples 

to create the dictionary. This approach extracts highly 

distinctive features. 

The dictionary atoms 𝒅𝑖 and data representation 

coefficients 𝑍 constitute the learning parameters in the 

optimization model. Typically, determining these parameters 

involves the following two steps. During the first step, a 

default dictionary is defined in the proposed algorithm using 

training samples, and 𝐸 and representation coefficients of 𝑍 

are calculated. Subsequently, the representation coefficients 

obtained from the first step are used to update the dictionary 

atoms 𝐷. These steps are iterated until the learning algorithm 

converges. 

Now, the highly distinctive features, which contain rich 

spectral-spatial information, are extracted. A classifier is 

needed to classify these features. The classifier maps the 

feature space to a class number. In this paper, we utilized the 

Support Vector Machine (SVM) for assigning labels to the 

features. SVM is a binary classifier that separates classes 

using linear boundaries. This algorithm locates the optimal 

margin or hyperplane for pixel classification within a 

multidimensional space. These margins are selected to 

maximize the distance from the closest pixels, which are 

called support vectors. This classifier performs well in high-

dimensional spaces and can also separate non-linear data 

using kernels [3]. 

The following section outlines the model optimization 

method. 

 

III. Optimization Algorithm of the Proposed 

SDLRRDL Method 

As previously mentioned, the SDLRRDL method can be 

defined as follows: 

(9) 
𝑚𝑖𝑛
𝑍.𝐸.𝐷

‖𝑍‖∗ + 𝛽‖𝑍‖1 + 𝜆 ‖𝐸‖1 + 𝛼‖𝑍 − 𝑆‖𝐹
2

𝑠. 𝑡   𝑋 = 𝐷𝑍 + 𝐸, 𝑍 ≥ 0, ∀𝑖  ‖𝑑𝑖‖2 ≤ 1, 𝑑𝑖 ≥ 0
 

Initially, the training samples are utilized as a primary 

dictionary for problem (9). Subsequently, this equation and 

the initial dictionary are used to calculate 𝑍 and 𝑬. The new 

dictionary stage is obtained by keeping 𝑍 and 𝐸 constant. 𝐸, 

𝑍, and 𝐷 will be iteratively Calculated until convergence is 

achieved. 

There are various methods to solve low-rank problems 

[31-33]. The Linearized Alternating Direction Method with 

Adaptive Penalty (LADMAP) approach [34] uses fewer 

auxiliary variables compared to the other methods [35], and 
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achieves faster convergence without any inverse matrix. The 

present study employs the LADMAP algorithm to solve the 

problem of SDLRRDL. 

 

A. Optimizing Z and E for a Constant D  

The equation (9) is reformulated by defining the auxiliary 

variable 𝑉 as follows: 

(10) 
𝑚𝑖𝑛
𝑍.𝐸.𝐷

‖𝑍‖∗ + 𝛽‖𝑉‖1 + 𝜆 ‖𝐸‖1 + 𝛼‖𝑉 − 𝑆‖𝐹
2

𝑠. 𝑡 𝑋 = 𝐷𝑍 + 𝐸. 𝑉 = 𝑍, 𝑉 ≥ 0, ∀𝑖 ‖𝑑𝑖‖2 ≤ 1, 𝑑𝑖 ≥ 0
 

Subsequently, the augmented Lagrangian function of 

problem (10) is defined as follows: 

(11) 

𝐿(𝑍. 𝑉. 𝐸. 𝑌1. 𝑌2) = ‖𝑍‖∗ + 𝛽‖𝑉‖1 + 𝜆‖𝐸‖1 

+𝛼‖𝑉 − 𝑆‖𝐹
2 + 〈𝑌1, 𝑋 − 𝐷𝑍 − 𝐸𝑐〉 + 〈𝑌2. 𝑍 − 𝑉〉 

+
𝜇

2
(‖𝑋 − 𝐷𝑍 − 𝐸𝑐‖𝐹

2 + ‖𝑍 − 𝑉‖𝐹
2 ),      

where, 𝒀1 and 𝒀2 represent Lagrange multipliers, while 

𝜇 > 0 is the penalty parameter. The other variables are then 

kept constant, and the Lagrangian complementary function 

is minimized with iterative updates to obtain each unknown 

variable. The representation matrix Z is obtained by 

minimizing the following function: 

 

(12) 

𝐿1 = ‖𝑍‖∗ +
𝜇

2
(‖𝑋 − 𝐷𝑍 − 𝐸𝑘 +

1

𝜇
𝑌1

𝑘‖
𝐹

2

+ ‖𝑍 − 𝑉𝑘 +
1

𝜇
𝑌2

𝑘‖
𝐹

2

). 

This operation is performed using the LADMAP 

algorithm as follows: 

(13) 

𝑍𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑍

‖𝑍‖∗ + 〈𝛻𝑍𝑓(𝑍𝑘), 𝑍 − 𝑍𝑘〉

+
𝜂𝜇𝑘

2
‖𝑍 − 𝑍𝑘‖𝐹

2 , 

where, 𝑓 is calculated as follows: 

(14) 

𝑓(𝑍, 𝐸𝑘 , 𝑉𝑘, 𝑌1
𝑘 , 𝑌2

𝑘) = 

𝜇

2
(‖𝑋 − 𝐷𝑍 − 𝐸𝑘 +

1

𝜇
𝑌1

𝑘  ‖
𝐹

2

+ ‖𝑍 − 𝑉𝑘 +
1

𝜇
𝑌2

𝑘‖
𝐹

2

), 

where, 𝛻𝑍𝑓 represents the gradient of 𝑓 with respect to 𝑍. 

Thus, 𝑍 is updated as follows: 

(15)  

𝑍𝑘+1 = 𝛩(𝜂𝜇𝑘)−1[𝑍𝑘 − 𝛻𝑍𝑓(𝑍𝑘) 𝜂𝜇𝑘⁄ ]   

𝛻𝑍𝑓(𝑍𝑘) = [𝜇𝑘 (𝑍𝑘 − 𝑉𝑘 +
𝒀2

𝑘

𝜇𝑘
)

− 𝜇𝑘𝑫𝑇 (𝑋 − 𝑫𝑍 − 𝐸𝑘 +
𝒀1

𝑘

𝜇𝑘
)] 

The equation 𝛩𝜏(𝐶) = 𝑈𝑆𝜏(𝛴)𝑉𝑇 is called singular value 

thresholding (SVT). Furthermore, the equation 𝑆𝜏(𝑥) =

𝑠𝑔𝑛(𝑥) 𝑚𝑎𝑥 (|𝑥| − 𝜏 , 0) is the soft thresholding operator, 

and 𝑈𝛴𝑉𝑇 denotes the singular value decomposition .Thus, 

𝐸 and 𝑉 are calculated as follows: 

(16) 

𝑉𝑘+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐽≥0

𝛽‖𝑉‖1 +  𝛼‖𝑉 − 𝑆‖𝐹
2 + 

+〈 𝑌2
𝑘 . 𝑍 − 𝑉〉 +

𝜇𝑘

2
‖𝑍𝑘+1 − 𝑉‖

𝐹

2
 

= 𝑚𝑎𝑥 {𝑆 𝛽

2𝛼+𝜇

(
2𝛼

2𝛼+𝜇
𝑆 +

1

2𝛼+𝜇
𝑌2

𝑘 +
𝜇

2𝛼+𝜇
𝑍𝑘+1) , 0} 

𝐸𝑘+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐸

𝜆 ‖𝐸‖1

+
𝜇𝑘

2
‖𝐸 − (𝑋 − 𝑫𝑍𝑘+1 +

𝑌1
𝑘

𝜇𝑘
)‖

𝐹

2

 

                             = 𝑆 𝜆

𝜇𝑘

(𝑋 − 𝐷𝑍𝑘+1 +
𝒀1

𝑘

𝜇𝑘
) 

(17) 

 𝑌1 and 𝑌2 Lagrange multipliers are updated using the 

following equations: 

(18) 

𝑌1
𝑘+1 = 𝑌1

𝑘 + 𝜇𝑘(X − DZk − Ek),   

 

𝑌2
𝑘+1 = 𝑌2

𝑘 + 𝜇𝑘(𝑍𝑘 − 𝑉𝑘), 

And convergence is determined as follows: 

(19) 

 

   ‖𝑋 − 𝐷𝑍 − 𝐸‖∞ < 𝜀   ,  ‖𝑍 − 𝑉‖∞ < ε 

B. Optimizing D for a Constant Z  

This subsection involves updating the dictionary matrix 𝐷 

while keeping the feature matrix 𝑍 constant. The 

optimization problem is as follows: 

(20) 
𝑚𝑖𝑛

𝐷

1

2
‖𝑋 − 𝐷𝑍‖1

𝑠. 𝑡.  ∀𝑖    ‖𝑑𝑖‖2 ≤ 1 , 𝑑𝑖 ≥ 0
 

Equation (20) has a quadratic form with respect to the 

matrix 𝐷, and constrains the dictionary atoms to a ball with 

a radius of one. The matrix 𝐷 is obtained as follows by 

solving equation (20): 

(21) 𝐷 = 𝑋𝑍𝑇(𝑍𝑍𝑇)−1 

In equation (21), the inverse calculation of 𝑍𝑍𝑇 is 

computationally complex. Thus, a Block Coordinate Descent 

(BCD) [36] approach is used to solve equation (20) to 

iteratively update the  atoms 𝒅i of the dictionary 𝐷. 𝑹𝑖 is 

calculated using the equation 𝑹𝑖 = 𝑋 − ∑ 𝒅𝑗𝑍𝑇
𝑗 𝑇

𝑗≠𝑖 , where 

𝒁𝑇
𝑗
 represents the 𝑗-th row of 𝑍 in its column form, and the 

objective function is obtained using the 𝑖-th dictionary atom 

as ‖𝑹𝑖 − 𝒅𝑖𝑍𝑇
𝑖 𝑇

‖
1
. The objective function (20), taking into 

account the norms concerning 𝑑𝑖 is rewriting as follows: 

(22) 
𝑚𝑖𝑛

𝑑𝑖

1

2
‖𝑑𝑖 −

𝑅𝑖𝑍𝑇
𝑖

‖𝑍𝑇
𝑖 ‖

2

2‖

1

𝑠. 𝑡.   ‖𝑑𝑖‖2 ≤ 1 , 𝑑𝑖 ≥ 0,

 

where, 𝑑𝑖 is calculated as follows: 

(23) 𝑑𝑖 = 𝑝𝑟𝑜𝑗𝑙2
+ (

𝑅𝑖𝑍𝑇
𝑖

‖𝑍𝑇
𝑖 ‖

2

2), 
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where,  𝑝𝑟𝑜𝑗𝑙2
+(𝒙) represents the projection of 𝒙 onto a 

ball with a radius of one in the 𝑙2 norm unit. The convergence 

condition for optimization is as follows: 

‖𝐷𝑘+1 − 𝐷𝑘‖∞ < 𝜀 (24) 

The following section outlines the details of simulating the 

proposed method. 

 

IV. Experimental result 

This section discusses the simulation details and evaluates 

the effectiveness of the proposed method. First, we introduce 

the HSI datasets, followed by presenting several comparative 

methods to evaluate our proposed approach. Finally, the 

performance of the proposed method will be compared with 

state-of-the-art methods based on various classification 

methods. Finally, we comprehensively evaluate SDLRRDL's 

classification accuracy against state-of-the-art approaches 

using multiple performance metrics. In this Paper, 

experiments are executed on a single Intel Core i7 CPU in a 

MATLAB 2024 b environment. The penalty parameter α is 

tuned through cross-validation approach. This parameter is 

selected from {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}. The 

optimal values of α for the Salinas, Pavia University, and 

Indian Pines datasets are 0.5, 1.1, and 0.7, respectively.   

For comparison, a wide range of approaches to classify the 

HSI, such as deep neural networks, SVM, and sparse and 

low-rank representations, are considered. Therefore, the 

accuracy of the proposed SDLRRDL approach is evaluated 

against SVM [3], JRSRC [14], LRR [16], LGIDL [21], 

SLAP [22], SSMM [12],  SSTN [10], and GSC-ViT [11] 

methods. In [3], hyperspectral data is classified using the 

SVM method. In [16], the classification of extracted features 

using low-rank representation is presented. In [14], JRSRC 

is proposed to classify extracted features using spatial 

information and a Sparse model.  This method employs a 

sparse representation of the neighboring pixels of the test 

pixel using a linear combination of a number of training 

samples. In [21], an LGIDL model is presented that extracts 

image features using spatial information. SLAP [22] is a low 

rank model combined with a regularized Laplacian that is 

applied to each super pixel separately and extracts features 

with high discrimination using the created affinity graph. 

The SSTN method [10] is based on deep neural networks that 

use attention, association, and structured factorized 

framework modules to extract spectral-spatial features and 

classify the HSI. GSC-ViT [11] is another deep learning 

network-based method that uses a light vision transformer 

network to classify the HSI. This method uses a group-wise 

separated convolution and a group-wise separated multi-

head associate module to reduce the number of convolutional 

kernel parameters, extract spectral-spatial information, and 

classify the HSI. In [12], the SSMM method employs the 

morphological analysis of HSI, state-space model, and 

multi-head self-attention module for the HSI classification 

task. 

A. Hyperspectral Image Dataset  

 This section introduces the three well-known HSI 

datasets, Indian Pines, Pavia University, and Salinas, to 

examine the accuracy of different methods. The Indian Pines 

HSI dataset was imaged by the AVIRIS sensor on June 12, 

1992, over an agricultural-forest region in northeastern 

Indian Pines. This dataset contains 220 bands that cover the 

wavelengths in 0.4 μm-2.5 μm, of which twenty bands are 

eliminated as noisy bands. The Indian Pines dataset contains 

145 × 145-dimensional images, where pixels are labeled 

with sixteen classes. The spatial resolution of Indian Pines is 

20 meters per pixel. Moreover, the Pavia University dataset 

was captured by the ROISIS sensor over the Pavia campus 

in northern Italy in 2002 and consists of 340 × 610 pixels. 

The spatial resolution of the Indian Pines dataset is 1.3 

meters per pixel. The 103 bands of the Pavia University HSI 

dataset have wavelengths within the interval of 0.43μm - 

0.83μm. Twelve bands are eliminated in this dataset as noisy 

bands, and 103 bands remain. This image has nine classes. 

The third dataset is Salinas, which has 224 bands, where 16 

noise bands are removed. This image has a 217 x 512-

dimensional image. The spatial resolution of the Salinas 

dataset is 3.7 meters per pixel and contains 16 classes [37]. 

 

B. Performance of the Proposed Method  

This subsection evaluates the classification accuracy 

between the proposed SDLRRDL method and state-of-the-

art approaches across three benchmark datasets: Indian Pines 

(Table II), Pavia University (Table II), and Salinas (Table 

IV). These methods are evaluated based on three metrics: 

average accuracy (AA), overall accuracy (OA), and κ 

coefficient. The classification accuracy of various 

comparison approaches for the India dataset is presented in 

Table II. Ten percent of the labeled samples of the Indian 

Pines HSI dataset are randomly chosen for training, and the 

remaining are for testing. The presented results show the 

average of 10 runs. Classification methods based on spectral 

information have achieved lower accuracy than methods that 

exploit the spectral-spatial signature of HSI. The 

classification accuracy results of Table II show that 

approaches such as LRR and SVM have poor performance 

in the classification task. The LRR method does not consider 

the local information. Therefore, the extracted features using 

this method are not rich enough; hence, it does not achieve 

proper accuracy. The other methods obtain better accuracy 

by exploiting the spectral-spatial signature of data. These 

results indicate that the accuracy of the SDLRRDL method 

is significantly different from that of other methods. The OA 

of the proposed SDLRRDL method is at least 2.13 percent 

higher than the best method and 27.79 percent higher than 

the LRR method. The proposed method is the most accurate 

approach in most classes of the Indian Pines dataset. Using 
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spectral-spatial information and considering the global and 

local structure within data, and providing appropriate 

constraints on the data structure and learning a dictionary 

through a set of training data, the proposed method extracts 

rich features, which causes high accuracy classification.  

Most hyperspectral image classification methods suffer 

from several common limitations: (1) insufficient training 

samples, (2) noisy spectral signatures, (3) intra-class spectral 

variability caused by varying physical properties across 

different regions, and (4) Imbalanced distribution of class 

samples. Therefore, methods with strong preprocessing and 

robust modeling are of great interest. The outlier and noisy 

data cause high-rank data. Methods based on low-rank 

representation are robust against noisy and outlier data 

because by eliminate the higher ranks. Using a combination 

of spectral and spatial information improves the performance 

of the classifier and reduces the sensitivity to noise, limited 

training samples, and the spectral variety of samples in a 

class. The proposed method reduces these limitations by 

exploiting spatial and spectral information of samples and 

using a sparse and low-rank representation. 

For instance, in the Indian Pines dataset, SDLRRDL 

achieves high accuracy in Classes 7 and 9, which have very 

few training samples. Figure 1 shows the classification map 

for various state-of-the-art approaches. Based on Figure 1, 

the methods that use only spectral information often 

misclassify many pixels in homogeneous areas, and their 

classification maps are noisy. Therefore, the classification  

 
 

 

TABLE II Classification accuracy (%) of different classifier for Indian Pines dataset  

Proposed 

method 
SSTN 

GSC-

ViT 
SSMM SLAP LGIDL LRR JRSRC SVM class 

100 100 74.63 65.79 91.22 63.41 19.15 58.54 87.80 1 

97.35 95.31 93.16 91.33 94.30 96.26 63.04 92.68 78.29 2 

98.47 94.93 98.25 92.17 95.17 91.97 56.36 95.18 64.66 3 

98.25 95.32 94.23 77.89 95.65 87.32 21.13 92.96 77.46 4 

99.5 90.32 94.83 91.45 95.10 90.80 75.17 88.51 91.72 5 

99.67 98.88 99.04 98.46 97.91 99.09 86.15 87.21 97.41 6 

100 86.54 89.6 77.32 97.57 84.01 47.97 72.00 64.02 7 

99.54 99.00 100 97.12 99.32 96.98 79.53 99.07 98.14 8 

98.34 99.91 53.33 75.05 82.07 38.89 11.11 33.33 33.33 9 

95.30 95.27 93.06 87.27 92.79 90.17 72.11 84.91 70.15 10 

98.69 96.63 97.86 92.87 96.91 95.74 83.88 97.56 83.52 11 

97.65 96.98 93.67 86.71 94.33 90.26 37.45 82.02 66.88 12 

100 97.50 99.46 98.78 98.63 94.02 80.43 88.04 95.65 13 

99.31 98.61 98.32 97.24 98.60 99.21 90.86 95.69 94.82 14 

98.57 96.14 89.48 88.39 97.49 94.24 24.50 95.10 59.37 15 

98.67 93.60 95.23 89.18 95.20 89.29 17.86 80.95 94.05 16 

98.26 95.52 96.03 92.14 96.13 94.52 70.47 92.36 81.67 OA 

98.70 95.93 91.51 87.94 95.14 87.60 54.19 83.99 78.60 AA 

98.02 94.91 95.48 91.04 95.68 93.74 65.45 91.24 79.02 𝜿 

map of the methods that use spectral-spatial information is 

smoother in areas of the same class. Also, the neighboring 

pixels are classified more accurately.  The classification map 

of the proposed method in Figure 1 illustrates that with an 

appropriate spectral-spatial method and the use of data 

structural information in classes with few training samples, 

pixels are classified with high accuracy, and areas with the 

same classes are smoothly labeled. In addition, the boundary 

pixels between classes are classified with higher contrast 

than other methods. Figure 2 illustrates OA of various 

classification methods for different training sample numbers 

on the Indian Pines dataset. Based on Figure 2, SDLRRDL 

has high accuracy for a small number of training samples. 
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(i) 

 

(j) 

 
Fig. 1. Classification map of different methods for the Indian Pines dataset. (a)ground truth, (b)The proposed method(SDLRRDL), (c) 

JRSRC, (d) SVM, (e) LRR, (f) LGIDL, (g) SLAP, (h) GSV, (i) SSTN, (j) SSMM. 

 

TABLE III Classification accuracy (%) of different classifier for Pavia University dataset 

Proposed 

method 
SSTN 

GSC-

ViT 
SSMM SLAP LGIDL LRR JRSRC SVM class 

99.31 98.40 99.23 98.57 99.45 96.81 88.46 95.62 94.11 1 

99.96 98.01 99.77 98.36 99.80 99.79 97.06 99.26 96.94 2 

95.43 91.32 95.88 89.95 85.26 89.22 72.67 88.82 81.44 3 

98.02 98.43 96.52 98.89 98.80 98.18 74.41 91.69 94.37 4 

99.88 99.71 99.74 99.88 98.87 100 68.47 99.84 99.30 5 

99.81 99.90 99.55 98.84 99.10 99.35 67.54 94.91 86.73 6 

98.93 99.49 99.38 97.49 98.30 94.70 80.36 87.89 86.30 7 

98.13 97.11 98.17 93.82 91.91 92.17 82.68 92.68 84.02 8 

99.28 97.59 99.31 99.21 98.92 98.89 94.56 99.59 99.89 9 

99.27 97.86 99.07 97.72 98.13 97.81 86.73 96.24 93.05 OA 

98.75 97.77 98.61 97.22 96.71 96.57 80.69 94.47 91.46 AA 

99.03 97.15 98.77 96.99 97.42 97.10 81.86 94.99 90.78 𝜿 
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Fig. 2. Overall Accuracy of Various Methods versus Different 

Numbers of Training Samples for Indian Pines Dataset. 

Table III shows the classification performance of various 

comparison approaches on the Pavia University dataset. Five 

percent of the HSI-labeled samples are considered for 

training, and the remaining are for testing. The results are 

averaged out over ten trials. The SDLRRDL approach 

outperforms the OA, AA, and κ coefficient of the state-of-

the-art approaches. The OA of the proposed SDLRRDL 

method is at least 0.2 percent higher than that of others. A 

high improvement in accuracy can be seen compared to 

methods that only used spectral information. The accuracy 

of the proposed method is 12.54 percent higher than that of 

the LRR model. Our method is the most accurate method in 

classes 1 and 2. Also, it has a negligible accuracy difference 

with the best accuracy among other methods in the 

remaining HSI classes. Figure 3 illustrates the OA of various 

classification approaches versus different numbers of 

training samples on Pavia University. The proposed 

SDLRRDL HSI classification approach is accurate in a small 

number of training samples. 

 
Fig. 3. Overall Accuracy of Various Methods versus Different 

Numbers of Training Samples for Pavia University Dataset. 

For 1 percent of training samples, it has achieved an 

overall accuracy of 97.01 percent. 

The classification performance of various methods on the 

Salinas dataset is presented in Table IV.  For the Salinas 

dataset, we randomly select 5% of the labeled samples for 

training purposes, utilizing the remaining 95% for testing. 

The results are presented based on the average of 10 runs. 

Based on Table IV, the proposed method improves the OA, 

AA, and 𝜅 coefficient of other methods. The OA of our 

method is at least 0.6 percent higher than that of the other 

methods. Its accuracy significantly improves the accuracy of 

methods that rely solely on spectral information. Also, the 

proposed method is 12.66 percent more accurate than the 

LRR model. The proposed method has achieved the best 

accuracy compared to other methods in the first, eighth, 11th, 

12th, 13th, 14th, 15th, and 16th classes. Moreover, in other 

classes, its accuracy has a negligible difference from the best 

state-of-the-art method. 
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TABLE IV Classification accuracy (%) of different classifier for Salinas dataset  

Proposed 

method 
SSTN 

GSC-

ViT 
SSMM SLAP LGIDL LRR JRSRC SVM class 

99.82 94.67 99.97 99.63 99.23 99.53 96.12 98.48 99.32 1 

99.93 99.62 99,32 100 99.87 99.46 96.07 98.81 99.87 2 

99.56 99.52 99.64 99.50 99.45 99.73 94.25 99.25 99.52 3 

98.69 98.97 99.09 98.66 98.09 99.09 92.37 98.04 98.79 4 

99.42 97.83 99.77 99.26 99.25 98.86 93.87 97.44 97.76 5 

99.98 99.98 99.99 99.94 99.73 99.60 94.42 98.75 99.67 6 

99.76 99.96 99.97 100 99.79 99.50 96.62 99.26 99.57 7 

98.88 95.77 97.66 95.71 96.61 93.99 82.73 93.59 88.35 8 

99.97 99.95 99.99 99.80 99.99 99.41 97.88 99.44 99.86 9 

99.46 99.68 98.74 97.11 99.02 97.85 87.32 94.84 95.41 10 

100 99.25 99.50 98.71 99.92 96.75 79.70 95.86 96.45 11 

100 99.67 99.62 99.81 99.97 99.95 94.81 100 99.67 12 

99.96 98.67 99.26 98.91 99.81 97.82 92.64 94.48 97.74 13 

99.97 99.62 99.58 98.48 99,43 92.62 72.44 94.39 96.95 14 

98.89 82.20 96.89 95.96 95.08 89.04 61.87 88.20 68.79 15 

99.88 99.77 98.74 99.66 99.58 98.66 86.49 96.97 99.30 16 

99.47 94.82 98.87 98.17 98.38 96.58 86.81 95.84 92.64 OA 

99.64 97.82 99.27 98.82 99.05 97.62 88.72 96.74 96.06 AA 

99.41 94.25 98.75 97.96 98.20 0.9619 85.20 95.36 91.79 𝜿 

 
Fig. 4. Overall Accuracy of Various Methods versus Different 

Numbers of Training Samples for Salinas Dataset. 

Figure 4 illustrates the OA of various classification methods 

for different numbers of training samples on Salinas.  As 

shown in Figure 4, the proposed method achieves high 

classification accuracy using only a small training set. For 

only 2 percent of training samples, the proposed method 

achieves an overall accuracy of 98.02 percent, surpassing the 

accuracy of most state-of-the-art methods, even when they 

use 5% of the training data. 

 

 

 

 

TABLE V OA accuracy and computing time (s) for three 

dataset 
Method Indian Pines Pavia 

University 

Salinas 

OA Time OA Time OA Time 

SVM 81.67 5.12 93.05 6.41 92.64 8.21 

JRSRC 92.36 332.21 96.24 558.11 95.84 786.2 

LRR 70.47 268.22 86.73 383.37 86.81 433.21 

LGIDL 94.52 396.13 97.81 563.21 96.58 723.12 

SLAP 96.13 374.23 98.13 616.31 98.38 801.32 

SSMM 92.14 148.14 97.72 283.67 98.17 401.78 

GSC 96.03 206 99.07 316.25 98.87 575.23 

SSTN 95.52 180 97.86 365.75 94.82 475.19 

Proposed 

method 
98.26 306.1 99.27 511.13 99.47 654.3 

 

C. Runtime Comparison 

In this subsection, we evaluate the complexity of the 

proposed method. The computational complexity of methods 

can be evaluated using the running time. In this regard, we 

compare the running times of the proposed method with the 

state-of-the-art methods.  Experiments are executed on a 
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single Intel Core i7 CPU in a MATLAB 2024 b environment. 

Table V presents the overall accuracy (OA) and running time 

of different methods. In the training phase, 10%, 5%, and 5% 

of the labeled samples are used for the Indian Pines, Pavia, 

and Salinas datasets, respectively.  

Table V indicates that while the proposed method is not a 

fastest method among the state-of-the-art method, it achieves 

significant classification accuracy compared to faster 

methods. However, the running time of the proposed method 

is not significantly difference with the comparing methods. 

Based on this table, although the SVM is the fastest method, 

it has poor classification 

. 

V. Conclusions 

The current study presents a machine learning method for 

the HSI classification. This approach proposes the Structure 

of the Data Regularized LLR with Dictionary Learning 

(SDLRRDL) model for feature extraction and HSI 

classification. To enhance low-rank representation, the 

SDLRRDL method takes the local structure and correlation 

of data into account by adding sparse regularization to the 

model and combining spatial and spectral information. 

Furthermore, the method utilizes a combination of image 

class information to create similar features for data of the 

same class. The proposed method represents HSI samples 

through a linear combination of dictionary atoms. The use of 

a fixed dictionary and employing all training samples as a 

dictionary leads to atoms with redundant information, 

increases computational complexity, and reduces feature 

Discrimination. SDLRRDL trains the dictionary and utilizes 

a set of training data to present a dictionary that better 

matches the training content. The extracted features exhibit 

high distinctiveness, such that a simple SVM classifier 

achieves high accuracy. Employing the LADMAP algorithm 

to solve the objective function has led to faster problem 

convergence. Experimental results indicate that the 

SDLRRDL method outperforms state-of-the-art approaches 

across all three datasets. The proposed method improves the 

accuracy of state-of-the-art methods by more than 2.13, 0.2, 

and 0.6 percent on the Indian Pines, Pavia University, and 

Salinas datasets, respectively. 
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