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This research introduces Serpentron, a novel snake-like robot with three joints and four 

links, designed for superior maneuverability in challenging environments. By extending 

the joint range to 180 degrees and incorporating virtual base rotation, Serpentron 

achieves a workspace diameter of 0.9 meters, a 50% improvement over traditional 

designs. A Neural Network-based Proportional-Derivative (NN-PD) controller is 

developed, dynamically tuning gains to track serpentine trajectories with joint angle 

errors below 0.02 radians and torques under 5 Nm, even under complex disturbances 

including Gaussian noise, velocity-dependent friction, and obstacle interactions. 

Simulations across single-direction, multiple-direction, and movable-direction scenarios 

demonstrate Serpentron’s adaptability, from planar navigation to dynamic base motion. 

The NN-PD controller reduces error variance by 50% compared to fixed-gain methods, 

leveraging a multilayer perceptron for real-time gain tuning. Torque analysis confirms 

the controller’s robustness against environmental uncertainties, ensuring stable 

performance within motor limits. Serpentron’s hyper-redundant kinematics and base 

mobility enable applications in confined-space exploration and volumetric inspection. 

Simulation results validate the model and control strategy, laying a scalable foundation 

for a cost-effective prototype using NVIDIA Jetson Nano and Dynamixel XL430 motors, 

with lightweight aluminum and ABS materials, to bridge the gap between simulation and 

real-world deployment in unstructured settings.   
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I. Introduction 

Research on snake-like robots, characterized by their 

hyper-redundant kinematic structures, holds critical 

importance due to their unique ability to navigate complex 

and constrained environments where traditional rigid robots 

falter. These robots, with multiple articulated joints enabling 

serpentine motion, offer unparalleled flexibility and 

adaptability, making them a focal point for advancing 

robotic locomotion and control. The study of such systems 

addresses fundamental challenges in modeling and 

controlling high-degree-of-freedom manipulators, 

particularly under nonlinear dynamics influenced by 

gravitational and inertial coupling. By developing robust 

control strategies, such as the neural network-augmented PD 

controller proposed here, this research pushes the boundaries 

of autonomous navigation, enabling snake-like robots to 

achieve precise trajectory tracking despite external 

disturbances. The significance extends beyond individual 

robot design, contributing to the broader field of soft and bio-

inspired robotics, where mimicking biological locomotion 

principles enhances efficiency and versatility. Furthermore, 

investigating these robots fosters interdisciplinary 

advancements, integrating mechanical design, control 

theory, and machine learning to solve real-world problems, 

from exploration to human-robot interaction, thereby driving 

innovation in next-generation robotic systems. The advent of 

snake-like robots marks a paradigm shift in robotics, 

harnessing the elegance of biological serpentine locomotion 

to address challenges insurmountable by conventional 

wheeled or legged systems. These hyper-redundant 

manipulators, characterized by a chain of articulated links, 

excel in navigating confined, cluttered, or irregular 

environments through diverse gaits such as serpentine, 

sidewinding, concertina, and rectilinear motion. This study 

presents a novel snake-like robot as shows in figure 1, 

custom-designed with three joints and four links, spanning 

75 cm in length and Each link is 15.7 cm long and 6 cm in 

diameter. The mechanical architecture emphasizes 

modularity and efficiency, incorporating high-torque servo 

motors (delivering up to 5 Nm) and lightweight aluminum 

links to balance structural rigidity with maneuverability. 

Each joint is equipped with precision encoders for real-time 

position feedback, ensuring robust operation under dynamic 

loads. This design, tailored for versatility, leverages a low 

center of gravity to enhance stability during complex 

maneuvers, distinguishing it from earlier prototypes 

constrained by bulkier actuators or less adaptable structures. 

The robot in this study is engineered to support such 

multifaceted applications, with its compact form factor and 

robust actuation enabling deployment in both terrestrial and 

extreme environments. Controlling snake-like robots, 

however, demands sophisticated strategies to manage their 

high degrees of freedom, nonlinear dynamics, and 

environmental interactions. Early efforts focused on 

kinematic control, prescribing joint angles to achieve desired 

gaits, as formalized by Chirikjian and Burdick’s geometric 

models for hyper-redundant systems [11]. These open-loop 

approaches, while computationally tractable, were 

vulnerable to uncertainties such as surface friction or 

unexpected obstacles. This study introduces a neural 

network-augmented PD (NN-PD) controller, designed to 

dynamically tune the PD gains for a three-joint snake-like 

robot. The controller employs a multilayer perceptron (MLP) 

with two inputs—tracking error and its time derivative ten 

hidden neurons utilizing a hyperbolic tangent activation 

function, and two outputs corresponding to the adaptive 

gains 𝐾p and 𝐾𝑑. The training methodology for the NN-PD 

controller is a pivotal contribution, engineered to balance 

computational efficiency with robust performance. A 

supervised learning approach was adopted, leveraging a 

dataset derived from the PD controller’s response to the 

reference trajectory under random torque disturbances to 

mitigate the computational burden of training on high-

dimensional data, 200 error pairs per joint were randomly 

sampled, yielding a compact yet representative dataset. The 

Levenberg-Marquardt algorithm was selected for its superior 

convergence properties in nonlinear least-squares problems, 

combining the efficiency of gradient descent with the 

stability of Gauss-Newton optimization. The training 

objective was to minimize the RMSE between desired and 

actual joint angles, achieving a target error of 10−4 within 

20 epochs. This approach offers several advantages: rapid 

convergence reduces training time to seconds, robustness to 

noisy inputs ensures reliable performance under 

disturbances, and generalization to unseen trajectories 

enhances practical applicability. Non-negative constraints 

on the MLP outputs 𝐾𝑝, 𝐾𝑑 ≥ 0 were enforced to guarantee 

closed-loop stability, addressing a critical concern in 

adaptive control systems. Compared to manual tuning or 

heuristic methods, this data-driven strategy provides a 

principled framework for optimizing control parameters, 

aligning with the theoretical rigor of modern control theory.  

The novelty of this study lies in the integration of an 

adaptive Neural Network-based Proportional-Derivative 

(NN-PD) controller with a custom-designed snake-like robot 

featuring an expanded 180-degree joint range and virtual 

base rotation, achieving a 50% larger workspace (0.9 meters) 

compared to conventional designs. Unlike traditional fixed-

gain PD controllers, the proposed NN-PD framework 

dynamically adjusts control gains in real-time using a 

multilayer perceptron, reducing joint angle error variance by 

50% under stochastic disturbances. Additionally, the 

incorporation of base mobility enhances the robot’s 

adaptability to dynamic environments, enabling versatile 

locomotion modes for applications such as confined-space 

exploration and volumetric inspection. This combination of 

hyper-redundant kinematics, intelligent control, and mobile 

base dynamics represents a significant advancement over 
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existing snake-like robot architectures, offering a scalable 

and robust solution for navigating complex, unstructured 

settings. 

 

 
Fig. 1. 3D model of the Serpentron designed in Solid 

works (with thanks to Mohammadreza Tajalli) 

 

II. Related Works 

The seminal work of Hirose in the 1970s introduced the 

Active Cord Mechanism (ACM), a groundbreaking 

biomimetic framework that employed sequential joint 

actuation to emulate snake kinematics [1]. Subsequent 

advancements by researchers like Ijspeert, who integrated 

central pattern generators (CPGs) to model oscillatory 

locomotion, expanded the theoretical foundation for these 

robots [2]. The applications of snake-like robots are as 

diverse as they are transformative, addressing critical needs 

across multiple domains. In search-and-rescue operations, 

their slender profiles and flexibility enable penetration into 

collapsed structures, navigating debris to locate survivors 

with integrated sensors like thermal cameras or 

microphones [4]. Industrial inspection benefits from their 

ability to access intricate systems such as nuclear reactors, 

oil pipelines, or aircraft engines without requiring costly 

disassembly, reducing downtime and safety risks [5]. In 

medical robotics, continuum-inspired snake-like designs 

are revolutionizing minimally invasive procedures; for 

instance, flexible endoscopes equipped with micro-

actuators facilitate precise interventions in delicate tissues, 

such as during neurosurgery or cardiac ablation [6]. 

Planetary exploration represents another frontier, where 

their resilience to rugged terrains and ability to traverse 

loose regolith make them ideal for missions to 

extraterrestrial bodies like Mars or icy moons and the 

distinctive morphology of snake-like robots enables novel 

solutions for confined space operations, driving 

multidisciplinary research in their biomimetic design and 

control architectures [7], [8]. snake robots with smooth 

exteriors and force-sensing capabilities can effectively 

navigate complex environments by using obstacles for 

propulsion [9]. As comprehensively reviewed bio-inspired 

robots demonstrate remarkable environmental adaptability 

through their modular bio-inspired design, enabling diverse 

applications across industrial, military, and rescue domains 

[10]. 

Feedback control emerged as a robust solution, with the 

proportional-derivative (PD) controller gaining prominence 

for its simplicity and effectiveness in trajectory tracking. In 

this work, the PD controller serves as a benchmark, with 

gains 𝐾𝑝 = 50 and 𝐾𝑑 = 5 meticulously tuned to optimize 

performance for a composite sinusoidal trajectory. The 

tuning process employed a gradient-free optimization 

technique, specifically a simulation-based iterative search, 

targeting minimization of the root mean square error 

(RMSE). By adjusting 𝐾𝑝 to enhance responsiveness and 

𝐾𝑑 to ensure adequate damping, the PD controller achieved 

an RMSE of 0.014–0.016 rad under nominal conditions. 

However, its reliance on fixed gains limits adaptability to 

nonlinear gravitational effects and external disturbances, 

necessitating more advanced control paradigms. The 

evolution of intelligent control has opened new avenues for 

addressing these limitations, integrating computational 

intelligence to achieve adaptability and resilience. Fuzzy 

logic, genetic algorithms, and artificial neural networks 

(ANNs) have been explored to enhance robotic control, 

with ANNs offering particular promise due to their capacity 

to model complex, nonlinear mappings [12]. For example, 

bionic snake robots achieve exceptional terrain adaptability 

through their flexible structures and diverse motion modes, 

mirroring biological reptilian locomotion capabilities by 

using GA-based approach, optimal locomotion sequences 

can be generated while preserving structural integrity 

during configuration transitions [13]. Rooted in the 

computational models of McCulloch and Pitts and 

propelled by the development of backpropagation by 

Rumelhart et al., neural networks have transformed control 

applications by enabling real-time parameter adaptation. In 

robotics, ANNs have been instrumental in tasks ranging 

from dynamic modeling to gain scheduling, as evidenced 

by Lewis et al.’s work on adaptive manipulator control [14]. 

Similarly, recent advancements in adaptive reinforcement 

learning (ARL) have shown promise in enhancing robotic 

decision-making. A study on ARL integrated with Robotic 

Process Automation (RPA) [9] demonstrated the potential 

of reinforcement learning algorithms to enable real-time 

adaptation in dynamic environments [15]. In the realm of 

optimization, Zhang neural networks have emerged as a 

powerful tool for handling nonlinear, time-varying systems. 

A recent study employed Zhang neural networks to 

optimize nonlinear time-varying functions, leveraging their 

parallel processing capabilities to search solution spaces 
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faster than traditional methods. Using the Luenberger-

Madala algorithm for training and a Taylor series for data 

normalization, the study achieved improved convergence 

and reduced error rates, though it noted sensitivity to local 

minima. While applied to energy management, this 

approach highlights the versatility of neural networks in 

dynamic optimization, complementing Serpentron’s NN-

PD controller, which dynamically tunes PD gains to address 

complex disturbances in real-time [16]. 

Building on these advancements, this study introduces 

Serpentron, a novel snake-like robot with a Neural 

Network-based Proportional-Derivative (NN-PD) 

controller. The NN-PD controller employs a multilayer 

perceptron to dynamically adjust PD gains, enabling 

adaptive motion control under complex disturbances, 

including Gaussian noise, velocity-dependent friction, and 

obstacle interactions. Serpentron’s design, with an 

extended 180-degree joint range and virtual base rotation, 

achieves a 0.9-meter workspace, a 50% improvement over 

conventional designs. Comprehensive simulations 

demonstrate that the NN-PD controller reduces joint angle 

error variance by 50% compared to fixed-gain PD methods, 

maintaining torques below 5 Nm within motor limits.  

The incorporation of a complex disturbance model, 

encompassing friction, obstacles, and noise, enhances the 

controller’s robustness for real-world applications such as 

confined-space exploration and volumetric inspection. By 

integrating adaptive neural control with the specific 

locomotion needs of snake-like robots, this study provides 

a scalable and robust solution, advancing the field toward 

practical implementation. 

 

III. Mechanical System Modeling 

The dynamic behavior of the custom-designed snake-like 

robot, a hyper-redundant manipulator with three joints and 

four links, requires a comprehensive mathematical model 

to enable precise control under complex trajectories and 

disturbances. With a total length of 75 cm and a mass of 4.5 

kg, the robot consists of four rigid links, each of length 𝐿 =

0.15 𝑚  and mass 𝑚 = 1.125 𝑘𝑔  interconnected by three 

actuated revolute joints equipped with high-torque servo 

motors and precision encoders. 

 
Fig. 2. snake like robot model 

 

This section derives all critical equations governing the 

robot’s motion, including kinematic relationships, the 

Jacobian matrix, dynamic equations via Lagrangian 

mechanics, and their numerical solution, ensuring a 

complete representation of inertial, gravitational, and 

external forces under a trajectory as follows with stochastic 

disturbances: 

 

𝜃𝑑.𝑖(𝑡) = 0.2 sin(𝑡 + (𝑖 − 1)
𝜋

3
+ 0.1 sin(2𝑡) 

(1) 

A. Kinematics and jacobian 

     The robot operates in the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, with each joint 

rotating about the vertical axis to achieve flexible, 

serpentine motion, mimicking biological snakes. The 

configuration is defined by joint angles, with corresponding 

velocities and accelerations describing the rate and 

curvature of motion, represented as a three-dimensional 

vector. The absolute orientation of link 𝑖 accumulates the 

angles of preceding joints, given by 𝜙𝑖 = ∑ 𝜃𝑗
1
𝑗=1   . 

Reflecting the serial kinematic chain’s dependency where 

each link’s position builds on its predecessors. Each link’s 

center of mass, located at 𝐿/2 = 0.075 𝑚 due to uniform 

mass distribution, is critical for computing gravitational and 

inertial effects. Assuming the base of link 1 is at the origin, 
the center of mass coordinates for each link are determined 

through trigonometric relationships, capturing the robot’s 

posture and introducing nonlinearities that complicate 

dynamic analysis but enable its versatility. For the joint 

angles and their derivatives, we have: 

𝜃 = [𝜃1, 𝜃2, 𝜃3]
𝑇  ∈  ℝ3 

𝜃̇ = [𝜃̇1, 𝜃̇2, 𝜃̇3]
𝑇

 

𝜃 = [𝜃̈1, 𝜃̈2, 𝜃̈3]
𝑇

 

 

(2) 

 

 

For the position of the center of mass of link 𝑖, we have: 

 

𝑥𝑐,𝑖 = ∑ 𝐿 cos(∑ 𝜃𝑘

𝑗

𝑘=1

) +
𝐿

2

𝑖−1

𝑗=1

cos(∑ 𝜃𝑘

𝑖

𝑘=1

) 

 

(3) 

 

𝑦𝑐,𝑖 = ∑𝐿 sin(∑ 𝜃𝑘

𝑗

𝑘=1

) +
𝐿

2

𝑖−1

𝑗=1

sin(∑ 𝜃𝑘

𝑖

𝑘=1

) 

 

 

(4) 

The Jacobian matrix connects joint velocities to the 

motion of a designated point, here chosen as the tip of link 

4, enabling analysis of how joint movements translate to 

task-space dynamics critical for tasks like navigation or 

inspection. The end-effector’s position is computed by 

summing the contributions of all four links, each oriented 

according to the cumulative joint angles, resulting in a 

position dependent on the entire kinematic chain. The 

Jacobian maps joint velocities to the end-effector’s 

Cartesian velocities, with each joint’s influence 
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diminishing as it is closer to the tip due to fewer 

downstream links affected. Its elements, obtained through 

differentiation, reveal configuration-dependent behavior, 

where certain postures may lead to singularities 

configurations where 𝑑𝑒𝑡(𝐽𝑇𝐽) → 0  reducing the robot’s 

ability to generate arbitrary velocities, a concern mitigated 

by the oscillatory trajectory’s design. These singularities, 

typically at full extension or collapse, require careful 

trajectory planning to maintain manipulability. The 

Jacobian also elucidates velocity propagation along the 

robot, as motion at joint 1 cascade to all links, impacting 

control coordination. While Cartesian control could 

leverage the Jacobian to track spatial paths, this study 

emphasizes joint-space control, using the Jacobian to verify 

kinematic constraints and ensure feasible motion planning 

for the robot’s 75 cm structure. For the end-effector’s 

position, we have: 

 

𝑥𝑒 = ∑𝐿 cos (∑ 𝜃𝑘

𝑗

𝑘=1

)

4

𝑗=1

 

 

(5) 

 

𝑦𝑒 = ∑ 𝐿 sin (∑ 𝜃𝑘

𝑗

𝑘=1

)

4

𝑗=1

 

 

(6) 

     For the relationship between end-effector and joint 

velocities, we have: 

𝑝𝑒̇ = [ 𝑥̇𝑒 , 𝑦̇𝑒]
𝑇 = 𝐽(𝜃)𝜃̇  (7) 

For the Jacobian matrix, we have: 

𝐽(𝜃) =

[
 
 
 
 
 
 
−𝐿 ∑𝑐𝑜𝑠

4

𝑗=1

(∑𝜃𝑘

𝑗

𝑘=1

) −𝐿 ∑𝑐𝑜𝑠

4

𝑗=2

(∑𝜃𝑘

𝑗

𝑘=1

) −𝐿 sin (∑𝜃𝑘

3

𝑘=1

)

𝐿 ∑𝑐𝑜𝑠

4

𝑗=1

(∑𝜃𝑘

𝑗

𝑘=1

) 𝐿 ∑ 𝑐𝑜𝑠

4

𝑗=1

(∑𝜃𝑘

𝑗

𝑘=1

) −𝐿 sin (∑𝜃𝑘

3

𝑘=1

)

]
 
 
 
 
 
 

 

 

 

(8) 

B. Dynamics 

The robot’s motion arises from the interplay of kinetic 

energy due to link rotations, potential energy from 

gravitational forces acting on the 4.5 kg mass, and torques 

supplied by servo motors, modeled using Lagrangian 

mechanics to capture the system’s nonlinear behavior. The 

kinetic energy reflects rotation about each link’s center of 

mass, with moment of inertia 𝐼𝑐,𝑡 =
1

12
𝑚𝐿2  driven by 

angular velocity 𝜔𝑖 = ∑ 𝜃̇𝑗
𝑖
𝑗=1  his creates inertial coupling, 

as joint 1’s acceleration affects all four links (inertia 

proportional to 4 links), joint 2 affects three, and joint 3 

affects two, demanding precise torque allocation to avoid 

oscillations or lag, especially under the dynamic trajectory’s 

rapid changes. The potential energy depends on the vertical 

displacement of each link’s center of mass, with gravity 𝑔 =

9.81 𝑚/𝑠2 generating torques up to 1.65 Nm per link when 

horizontal ( sin(∅𝑖) ≈ 1) diminishing to zero when vertical, 

posing stability challenges for the distributed mass. The 

servo motors, capped at 5 Nm, must counteract these torques 

without saturation, a constraint shaping control design to 

prevent overheating or failure. The Lagrangian, defined as 

kinetic minus potential energy, yields equations balancing 

inertial accelerations and gravitational torques against motor 

inputs, revealing the system’s complexity through coupled, 

nonlinear terms. Expressing the dynamics in matrix form 

isolates inertia, gravity, and torque contributions, with 

velocity-dependent effects neglected at low speeds  (|𝜃̇| ≤

 0.4 𝑟𝑎𝑑/𝑠)  simplifies computations while retaining 

accuracy for the intended motion profile. For the total kinetic 

energy, we have: 

 

𝑇 = ∑
1

24

4

𝑖=1

𝑚𝐿2 (∑𝜃̇𝑗

𝑖

𝑗=1

)

2

 

 

(9) 

 

For the total potential energy, we have: 

 

 

𝑉 = 𝑚𝑔 ∑[∑𝐿 sin(∑𝜃𝑘

𝑗

𝑘=1

) +
𝐿

2
sin(∑𝜃𝑘

𝑖

𝑘=1

)

𝑖−1

𝑗=1

]

4

𝑖=1

 

 

(10) 

 

For the Lagrangian equations of motion, we have: 

∑
1

24

4

𝑖=𝑙

𝑚𝐿2 (∑𝜃̈𝑗

𝑙

𝑗=1

)

2

+ 

 𝑚𝑔∑[∑𝐿 sin(∑𝜃𝑘

𝑗

𝑘=1

) +
𝐿

2
sin(∑𝜃𝑘

𝑙

𝑘=1

)

𝑙−1

𝑗=𝑙

] = 𝜏𝑖

4

𝑖=𝑙

 

 

 

(11) 

For the matrix form of the dynamics, we have: 

 

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃) = 𝜏𝑖  (12) 

For the inertia matrix and Coriolis approximation, we have 

𝑀 = 𝑑𝑖𝑎𝑔(0.010125, 0.00759375, 0.0050625) kg and 𝐶 ≈

0 . The Coriolis and centripetal matrix 𝐶(𝜃, 𝜃̇)  capture 

velocity-dependent effects, arising from interactions 

between joint velocities in the kinetic energy. These terms, 

proportional to products like 𝜃̇𝑖𝜃̇𝑗 escribe forces induced by 

relative motions (Coriolis) and radial accelerations 

(centripetal). For this robot, operating at low angular 

velocities (|𝜃̇| ≤  0.4 𝑟𝑎𝑑/𝑠)  due to the trajectory’s 

moderate amplitude and frequency, these terms are small. 

The kinetic energy’s velocity terms scale as (∑ 𝜃̇𝑗
𝑖
𝑗=1 )

2
and 

their derivatives yield Coriolis contributions like 𝐶𝑖𝑗  𝛼 𝜃̇𝑘 

Numerically, with 𝜃̇𝑖 ≈ 0.4 𝑟𝑎𝑑/𝑠  the product 𝜃̇𝑖𝜃̇𝑗 ≤

0.16 𝑟𝑎𝑑2/𝑠2 and when multiplied by the inertia coefficient 

the resulting torques are on the order of 0.0004 𝑁𝑚 

negligible compared to gravitational torques (up to 1.65 Nm) 

or control inputs (up to 5 Nm). This small magnitude, 
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combined with the planar motion’s simplified geometry, 

justifies approximating 𝐶 ≈ 0  educing computational 

complexity without sacrificing accuracy for the intended 

low-speed regime. However, this assumption holds only 

within the velocity range specified; at higher speeds C could 

contribute torques up to 0.01 Nm, potentially affecting 

tracking, requiring its inclusion for high-speed applications. 

For the current study, the approximation aligns with the 

trajectory’s dynamics, validated by simulation results 

showing errors below 10−4 𝑟𝑎𝑑 . The gravitational torque 

vector depends on the robot’s configuration, computed 

numerically per time step. For the gravitational torque 

vector, we have: 

 

𝐺𝑖 = 𝑚𝑔𝐿 ∑[∑cos(∑ 𝜃𝑘

𝑗

𝑘=1

) +
1

2

𝑙−1

𝑗=𝑖

cos (∑ 𝜃𝑘

𝑙

𝑘=1

)]

4 

𝑙=𝑖

 

 

(13) 

 

C. External Disturbances  

Uncertainties such as surface irregularities or unmodeled 

friction are simulated by incorporating random torque 

perturbations into the control inputs. These disturbances, 

drawn from a normal distribution with zero mean and 

standard deviation 0.1 Nm, challenge the controller’s ability 

to maintain precise tracking, mimicking real-world 

conditions where external forces introduce unpredictable 

variations that the 5 Nm motors must overcome alongside 

gravitational and inertial loads. For the total torque with 

disturbances, we have: 

 

𝜏𝑇𝑜𝑡𝑎𝑙 = 𝜏 + 𝜏𝑑𝑖𝑠 ,   𝜏𝑑𝑖𝑠 = 𝒩(0,0.1) 𝑁𝑚 (14) 

The external disturbance modeled as 𝜏𝑑𝑖𝑠  represents 

random torque perturbations applied to each joint of the 

snake-like robot to simulate real-world uncertainties. Its 

nature is stochastic, drawn from a Gaussian (normal) 

distribution with a mean of zero and a standard deviation of 

0.1 Nm, ensuring unbiased variations with a spread that 

challenges control robustness without overwhelming the 

system. Physically, it mimics unpredictable environmental 

effects, such as surface irregularities (e.g., uneven terrain 

causing variable friction), external forces (e.g., minor 

collisions or wind), or unmodeled dynamics (e.g., joint wear 

or sensor noise). The choice of 0.1 Nm about 2% of the servo 

motors’ 5 Nm capacity reflects realistic perturbations for a 

4.5 kg robot, significant enough to test the controller’s 

adaptability but small enough to avoid instability. The 

Gaussian distribution ensures that disturbances are typically 

small, with rare larger excursions (e.g., 99.7% of values lie 

within ±0.3  Nm), mimicking natural variability. This 

stochastic model, applied independently to each joint at each 

time step, introduces dynamic challenges that the neural 

network-based PD controller must counteract to maintain 

precise tracking of the trajectory 𝜃̇𝑑,𝑡  enhancing the 

simulation’s fidelity to real-world conditions: 

D. Complex Disturbance Modeling 

To enhance the fidelity of the snake-like robot’s dynamic 

model and evaluate the robustness of the Neural Network-

based Proportional-Derivative (NN-PD) controller under 

realistic conditions, this study incorporates complex 

environmental disturbances, including variable friction and 

obstacle interactions.  These disturbances extend beyond the 

simple Gaussian torque perturbations (mean 0, standard 

deviation 0.1 Nm) previously considered, capturing the 

multifaceted challenges encountered in unstructured 

environments such as uneven terrain, physical obstacles, or 

dynamic external forces. By modeling these effects, the 

simulation framework better reflects real-world scenarios, 

such as search-and-rescue missions or industrial inspections, 

where the robot must maintain precise trajectory tracking 

despite unpredictable interactions. This subsection derives 

the mathematical formulations for these disturbances, 

provides physical intuition for their impact on the robot’s 

dynamics, and integrates them into the existing model to 

ensure compatibility with the numerical solver and control 

strategy. 

Friction between the robot’s links and the environment, 

such as rough surfaces or debris, introduces significant 

variability in joint torques, particularly for a snake-like robot 

navigating confined spaces. Unlike constant friction models, 

which oversimplify real-world interactions, this study adopts 

a velocity-dependent friction model to capture the dynamic 

interplay between the robot’s motion and surface 

irregularities. The friction torque for each joint i is modeled 

as a combination of viscous and Coulomb friction, reflecting 

both speed-dependent damping and static resistance. The 

friction torque is expressed as: 

 

𝜏𝑓,𝑖 = −𝑏𝑖𝜃𝑖̇ − 𝜇𝑖𝑠𝑔𝑛(𝜃𝑖̇)𝜏𝑁,𝑖  (15) 

Where 𝑏𝑖 = 0.05 𝑁𝑚/(𝑟𝑎𝑑/𝑠)  is the viscous friction 

coefficient, 𝜇𝑖 = 0.03 is the Coulomb friction coefficient, 𝜃𝑖̇ 

is the angular velocity of joint 𝑖 and 𝜏𝑁,𝑖 = 𝑚𝑔𝐿/2 = 0.827 

Nm is the normal torque derived from the gravitational force 

acting on the link’s center of mass. The sign function 

𝑠𝑔𝑛(𝜃𝑖̇) accounts for the direction of motion, ensuring that 

friction opposes the joint’s rotation. Physically, this model 

represents the resistance encountered when the robot’s links 

slide over uneven surfaces, such as gravel or rubble, where 

viscous friction scales with speed and Coulomb friction 

introduces a constant resistive threshold. The coefficients 𝑏𝑖 

and 𝜇𝑖  were selected based on typical values for lightweight 

aluminum links in contact with rough surfaces, ensuring 

realistic magnitudes (friction torques up to 0.15 Nm) relative 

to the servo motors’ capacity (5 Nm). The friction torque 

introduces nonlinearities into the dynamics, as the sign 
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function creates discontinuities at zero velocity, challenging 

the controller’s ability to maintain smooth tracking. For 

instance, during low-speed maneuvers (|𝜃𝑖̇| ≤ 0.4 𝑟𝑎𝑑/𝑠) 

the Coulomb component dominates, potentially causing 

stick-slip behavior, while at higher velocities, viscous 

friction increases damping, affecting the robot’s 

responsiveness. These effects are critical in applications like 

pipeline inspection, where surface variations are common, 

and the NN-PD controller must adapt to maintain joint angle 

errors below 0.02 radians. 

In real-world scenarios, snake-like robots often encounter 

physical obstacles, such as walls, debris, or equipment, 

which impart external forces that disrupt trajectory tracking. 

To simulate these interactions, this study introduces a time-

varying external force model applied to the robot’s end-

effector, mimicking contact with a dynamic obstacle, such as 

a moving object or environmental perturbation (e.g., wind 

gusts in outdoor exploration). The external force is modeled 

as a periodic function to represent rhythmic interactions, 

such as repeated contact with a vibrating surface or periodic 

environmental disturbances: 

 

𝐹𝑒𝑥𝑡(𝑡) = [0.2 𝑠𝑖𝑛(2𝜋. 0.1𝑡), 0]𝑇  (16) 

 

This force, applied in the 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 at the tip of the 

fourth link, has an amplitude of 0.2 N and a frequency of 0.1 

Hz, chosen to simulate realistic perturbations without 

overwhelming the robot’s 4.5 kg mass or 5 Nm motor 

capacity. The force is transformed into equivalent joint 

torques using the Jacobian matrix 𝐽(𝜃)  , which maps 

Cartesian forces to joint torques: 

 

𝜏𝑒𝑥𝑡 = 𝐽𝑇(𝜃)𝐹𝑒𝑥𝑡(𝑡) (17) 

 

Where 𝐽(𝜃) is the Jacobian matrix, defined in Section 2.A, 

and 𝜏𝑒𝑥𝑡 ∈  ℝ3 is the resulting torque vector applied to the 

joints. Physically, this torque represents the reaction forces 

experienced by the robot when its tip contacts an obstacle, 

such as during navigation through a cluttered environment. 

The sinusoidal nature of 𝐹𝑒𝑥𝑡  introduces dynamic variations, 

with peak torques up to 0.3 Nm (based on the Jacobian’s 

configuration-dependent scaling), which are significant 

enough to test the NN-PD controller’s adaptability but 

remain within the motors’ operational limits. The zero y-

component simplifies the model to focus on planar 

interactions, aligning with the robot’s primary motion plane, 

though future extensions could include 3D forces for more 

complex scenarios. The obstacle interaction model 

challenges the controller by introducing configuration-

dependent torques, as the Jacobian 𝐽(𝜃)  varies with the 

robot’s posture. For example, when the robot is fully 

extended (𝜃𝑖 ≈ 0)  the Jacobian amplifies the effect of 

external forces on proximal joints, increasing torque 

demands on joint 1. Conversely, in coiled configurations, the 

torques distribute more evenly, requiring the NN-PD 

controller to adjust gains dynamically to prevent overshoot 

or oscillations. This model enhances the simulation’s 

relevance to applications like search-and-rescue, where the 

robot must navigate debris fields while maintaining precise 

control. 
The complex disturbances are incorporated into the robot’s 

dynamic equations to evaluate their impact on motion and 

control performance. The total torque applied to each joint 

now includes contributions from friction and obstacle 

interactions, in addition to the previously modeled Gaussian 

disturbances: 

 

𝜏𝑡𝑜𝑡𝑎𝑙,𝑖 = 𝜏𝑖 + 𝜏𝑑𝑖𝑠,𝑖 + 𝜏𝑓.𝑖 + 𝜏𝑒𝑥𝑡,𝑖 (18) 

 

Where 𝜏𝑖 is the control torque from the NN-PD controller, 

𝜏𝑑𝑖𝑠 = 𝒩(0,0.1) 𝑁𝑚 is the Gaussian disturbance, 𝜏𝑓.𝑖  is the 

friction torque, and 𝜏𝑒𝑥𝑡,𝑖 is the obstacle-induced torque. The 

dynamic equations, derived via Lagrangian mechanics, are 

updated as: 

 

𝑀(𝜃)𝜃̈ + 𝐺(𝜃) + 𝜏𝑓 + 𝜏𝑒𝑥𝑡 = 𝜏 + 𝜏𝑑𝑖𝑠  (19) 

 

Where 𝑀(𝜃)  is the inertia matrix, 𝐺(𝜃)  is the 

gravitational torque vector, and 𝜏𝑓 = [𝜏𝑓,1, 𝜏𝑓,2, 𝜏𝑓,3]
𝑇
, 𝜏𝑒𝑥𝑡 =

[𝜏𝑒𝑥𝑡,1, 𝜏𝑒𝑥𝑡,2, 𝜏𝑒𝑥𝑡,3]
𝑇
 . The Coriolis matrix 𝐶(𝜃, 𝜃̇)  remains 

approximated as zero due to low velocities, consistent with 

Section 2.B. This formulation ensures that all disturbance 

effects are captured in the numerical solver (MATLAB’s 

ode23), allowing accurate simulation of the robot’s response 

over the 10-second trajectory. The selection of velocity-

dependent friction and periodic obstacle interaction models 

is motivated by their prevalence in real-world scenarios, 

such as pipeline inspection or search-and-rescue missions, 

where surface irregularities and dynamic environmental 

contacts are common [5]. These models ensure the 

simulation captures realistic challenges, enhancing the 

applicability of the NN-PD controller to practical, 

unstructured settings. 

 

E. Numerical Solution 

     The nonlinear dynamic equations governing the snake-

like robot, augmented with complex disturbances as 

described in Section D, are solved numerically to analyze the 

torque profiles and motion under realistic environmental 

conditions. This section outlines the numerical 

implementation of the robot’s dynamics, incorporating 

Gaussian noise, variable friction (viscous and Coulomb), and 

obstacle interaction torques, using MATLAB’s ode23 solver. 

The solver’s adaptive step-size Runge-Kutta (2,3) method 

ensures computational efficiency and accuracy for the 3-

joint, 4-link robot (total mass 4.5 kg, length 75 cm) over a 

10-second simulation period. The numerical solution 

supports three motion scenarios Single Direction, Multiple 

Direction and Movable Direction (with base motion) 

facilitating applications such as confined-space navigation 

and dynamic torque optimization. To enable numerical 

integration, the second-order dynamics are reformulated as a 

first-order system using the state vector 𝑥 = [𝜃, 𝜃̇]
𝑇

∈  ℝ6:  
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𝑥̇ = [
𝜃̇

𝑀−1(𝜃)(𝜏 + 𝜏𝑑𝑖𝑠 + 𝜏𝑓 + 𝜏𝑒𝑥𝑡 − 𝐺(𝜃)
] 

(20) 

 

The ode23 solver integrates this system from initial 

conditions 𝜃(0) = [0.1,0.1,0.1]𝑇 rad, 𝜃̇(0) = [0,0,0]𝑇  radss 

over 𝑡 ∈ [0,10]  s, with a nominal step size of 0.01 s and 

adaptive tolerances (relative: 10−3 , absolute:  10−6 ) The 

solver’s efficiency, completing simulations in under 3 

seconds on standard hardware, stems from the diagonal 

inertia matrix and optimized disturbance calculations. For 

the Single Direction scenario, the robot operates in a fixed 

plane, with obstacle torques computed using the Jacobian. 

The Movable Direction scenario incorporates base 

translation, further amplifying disturbance effects. 

Numerical stability is ensured by the positive definiteness of 

𝑀(𝜃)  verified analytically, and the bounded nature of 

disturbance torques (|𝜏𝑑𝑖𝑠| ≤ 0.3 𝑁𝑚, |𝜏𝑓| ≤

0.2 𝑁𝑚, |𝜏𝑒𝑥𝑡| ≤ 0.5 𝑁𝑚) . The solution’s accuracy is 

validated by checking energy conservation in disturbance-

free cases and comparing gravitational torques against 

theoretical maxima. Torque profiles (control, friction, 

obstacle, and Gaussian) are discussed alongside joint angles, 

enabling detailed post-processing for applications like torque 

optimization or disturbance analysis. This numerical 

framework provides a robust platform for evaluating the 

robot’s dynamic response under complex disturbances, 

supporting its deployment in tasks requiring precise motion 

in unstructured environments. The numerical solution using 

MATLAB’s ode23 solver provides high accuracy and 

efficiency, completing simulations in under 3 seconds for the 

10-second trajectory. However, computational complexity 

may increase with finer time steps or higher degrees of 

freedom, potentially leading to longer processing times on 

resource-constrained platforms. Future work could explore 

optimized solvers, such as ode45, for balancing accuracy and 

computational cost in real-time applications. Table I 

summarizes the joint angle RMSE and average control 

torques across these scenarios, highlighting the impact of 

complex disturbances, including Gaussian noise, friction, 

and obstacle interactions. 

 
TABLE I Comparison of Joint Angle RMSE and Average 

Control Torque across Motion Scenarios 

Item Motion Scenario A B 

1 Single Direction 0.010 2.5 
2 Multiple Direction 0.015 3.0 

3 Movable Direction 0.018 3.2 

 

The numerical solution using MATLAB’s ode23 solver 

provides high accuracy and efficiency, completing 

simulations in under 3 seconds for the 10-second trajectory. 

However, computational complexity may increase with finer 

time steps or higher degrees of freedom, potentially leading 

to longer processing times on resource-constrained 

platforms. Future work could explore optimized solvers, 

such as ode45, for balancing accuracy and computational 

cost in real-time applications. 

 
Fig. 3. Bar plot comparing joint angle RMSE across Single 

Direction, Multiple Direction, and Movable Direction 

scenarios, highlighting the impact of complex disturbances on 

tracking performance 

 

To further illustrate the impact of complex disturbances on 

tracking performance, Figure 7 presents a bar plot comparing 

the joint angle RMSE across the three motion scenarios: 

Single Direction, Multiple Direction, and Movable 

Direction. The plot highlights that the Single Direction 

scenario achieves the lowest RMSE (0.010 radians) due to 

its simpler planar dynamics, while the Movable Direction 

scenario exhibits a slightly higher RMSE (0.018 radians) 

owing to the added complexity of base motion and 

disturbance interactions. These results underscore the NN-

PD controller’s robustness in maintaining low tracking 

errors despite Gaussian noise, friction, and obstacle-induced 

torques, validating the numerical solution’s effectiveness for 

real-world applications. 

 

F. Serpentine motion simulation 

As you can see in figure 3 to demonstrate the improved 

workspace and kinematic flexibility of the modified robot 

model, a comprehensive visualization of its 3D serpentine 

motion was conducted across three distinct scenarios: single 

direction, multiple direction, and movable direction. These 

visualizations, generated using MATLAB, capture the 

robot’s full range of configurations over a 10-second period 

with a fine time resolution, reflecting the prescribed joint 

trajectory and base rotation. The resulting static 3D plots 

highlight the robot’s ability to leverage its expanded joint 

flexibility and base mobility, achieving a workspace roughly 

0.9 meters in diameter, a notable enhancement over the 

original 0.6-meter reach, thus confirming the model’s 

suitability for versatile navigation and control tasks. 



43                                      Development and Control of a Neural-Enhanced PD Controller /M.Sobhani et al 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. static 3D serpentine motion with enhanced 

workspace, (a) single direction, (b) multiple direction, (c) 

movable direction 

 

In the single direction scenario, the robot moves within a 

fixed plane, with the base orientation held constant. The 

visualization shows a dense cluster of paths, illustrating the 

variety of shapes the robot can adopt as it follows the joint 

trajectory. The increased joint range allows the robot to 

transition smoothly between nearly straight alignments, 

extending close to its full 0.6-meter length, and compact, 

curving forms resembling tight loops. This range of motion 

covers a planar area approximately 1.6 meters wide, with 

joint positions clearly marked to show the articulated 

structure. The fixed base simplifies the robot’s behavior, 

making it ideal for tasks like navigating flat, constrained 

spaces, as the model accurately predicts stable motion 

consistent with its inertial and gravitational characteristics. 

For the multiple direction scenario, the robot’s motion 

extends into three dimensions, alternating between 

horizontal and vertical planes, guided by the base rotation 

and a periodic modulation. To avoid overcrowding the plot, 

the visualization focuses on the path traced by the robot’s tip, 

represented as a cloud of points, with selected configurations 

shown at one-second intervals. This point cloud fills a 

volume about 1.6 meters wide and 0.6 meters tall, 

showcasing the robot’s ability to reach diverse points in 

space. The tip’s path weaves intricate, non-planar patterns, 

driven by the interplay of flexible joints and base movement, 

while the sample configurations display twisting, snake-like 

forms. These results underscore the model’s capability for 

complex 3D tasks, such as inspecting irregular structures or 

manipulating objects in varied orientations. In the movable 

direction scenario, the robot’s base follows a circular path 

with a slight vertical oscillation, combined with base rotation 

The plot displays a broad sweep of configurations, forming 

a cylindrical workspace. The base’s motion allows the robot 

to stretch its reach further, with the tip accessing points up to 

0.9 meters from the center by combining the base’s 

displacement with the arm’s full extension. The visualized 

shapes range from elongated stretches to coiled loops, 

adapting dynamically to the moving base. This flexibility 

highlights the model’s strength in scenarios requiring 

mobility, such as exploration across uneven terrain, where 

the robot must continuously adjust its posture. The forces 

acting on the robot, including those from gravity, remain 

within the motors’ capacity, ensuring practical 

implementation. Together, these visualizations validate the 

modified model’s ability to achieve a significantly larger and 

more adaptable workspace. The single direction case 

confirms robust planar performance, the multiple direction 

case illustrates three-dimensional agility, and the movable 

direction case proves resilience in dynamic settings. 

Rendered with high clarity and precise labeling, the plots 

offer a clear view of the robot’s motion range, directly 

supporting the model’s design and setting the stage for 

advanced control strategies to address the challenges of this 

expanded operational scope. 

 

IV. Intelligent Controller Design and Simulation 

The snake-like robot’s enhanced kinematic model, with its 

expanded joint range and dynamic base rotation, necessitates 

a robust control strategy to achieve precise tracking of 

complex trajectories while counteracting environmental 

uncertainties. This section focuses on the design and 

simulation of a Neural Network-based Proportional-

Derivative (NN-PD) controller as you can see in figure 4, 

tailored to regulate the robot’s motion within its 0.9-meter 

workspace. The NN-PD approach leverages the adaptability 

of neural networks to tune PD control gains, optimizing 

performance for the trajectory defined over a 10-second 

period. 

 
Fig. 5. Neural Network-based Proportional-Derivative (NN-

PD) block diagram 
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By determining appropriate PD coefficients and control 

efforts, integrating a brief methodology and historical 

context of intelligent controllers in robotics, and analyzing 

simulation results, this section elucidates the NN-PD’s 

impact on the robot’s motion and its advantages over 

conventional methods, paving the way for advanced control 

applications. Intelligent controllers, which combine classical 

control frameworks with adaptive or learning-based 

techniques, have transformed robotic systems by addressing 

nonlinear dynamics and uncertainties that traditional 

methods struggle to handle. Historically, robotic control 

began with linear techniques like PID controllers in the mid-

20th century, effective for simple manipulators but limited 

for hyper-redundant systems like snake-like robots. The 

1980s saw the rise of adaptive control, enabling real-time 

parameter adjustments, followed by fuzzy logic and neural 

network-based controllers in the 1990s, which introduced 

data-driven learning to mimic human decision-making. 

Neural networks, inspired by biological systems, gained 

prominence in robotics for their ability to approximate 

complex mappings, making them ideal for tuning control 

parameters in dynamic environments. neural network 

enhanced adaptive control systems significantly improve 

trajectory tracking in multi-DOF snake robots compared to 

traditional PID approaches, particularly when handling 

abrupt trajectory changes [14]. The integration of GVF 

technology with snake robot control systems enables 

effective transformation of navigation problems into 

reference angle tracking tasks, particularly valuable for 

operations in cluttered environments, Ningwei Li et al 

comprehensive control taxonomy provides crucial insights 

into the trade-offs between convergence speed, actuator 

constraints, and stability in high-DOF snake robot systems 

[15]. the neural network self-tuning mechanism enables real-

time adaptation to system nonlinearities, reducing the need 

for precise mathematical modeling while improving 

trajectory tracking performance in robotic manipulators [16]. 

The NN-PD controller, a hybrid approach, emerged as a 

powerful method by blending the simplicity of PD control 

with neural network adaptability, particularly suited for 

robots with nonlinear kinematics and external disturbances. 

This methodology involves training a neural network to 

adjust PD gains based on tracking errors, enhancing 

robustness without requiring precise dynamic models, a 

critical advantage for the snake-like robot’s coupled 

dynamics [22], [23]. 

 

A. NN-PD Controller Design 

The NN-PD controller is designed to track the robot’s joint 

trajectory while maintaining stability across its expanded 

workspace. The PD component computes control torques 

based on joint position and velocity errors, while the neural 

network dynamically adjusts the proportional and derivative 

gains to minimize tracking deviations under disturbances. 

The control objective is to ensure each joint follows its 

desired path, with the base rotation treated as a fixed input 

for simplicity, though adaptable in future designs. The neural 

network, a feedforward multilayer perceptron with one 

hidden layer of 10 neurons, takes error signals as inputs and 

outputs gain corrections, trained offline using simulated 

trajectory data to approximate optimal tuning. For the PD 

control torque for joint 𝑖, we have: 

𝜏𝑃𝐷,𝑖 = 𝐾𝑝,𝑖𝑒𝑖 + 𝐾𝑑,𝑖𝑒̇𝑖  (21) 

where 𝑒𝑖 = 𝜃𝑑,𝑖 − 𝜃𝑖is the tracking error, 𝑒̇𝑖 = 𝜃̇𝑑,𝑖 − 𝜃̇𝑖, and 

𝐾𝑝,𝑖, 𝐾𝑑,𝑖  are the proportional and derivative gains. Initial PD 

gains were selected via trial-and-error to balance responsiveness 

and stability, considering the robot’s inertial properties 

(diagonal inertia matrix with elements up to 0.010125 kg·m²) 

and gravitational torques (up to 1.65 Nm per link). Nominal 

values of 𝐾𝑝,𝑖 = 50 and 𝐾𝑑,𝑖 = 5 were chosen for each joint, 

ensuring torques remain within the 5 Nm motor limit while 

achieving rise times below 0.5 seconds for step inputs. These 

gains yield a baseline control effort, with peak torques around 3 

Nm under nominal conditions, sufficient to counteract gravity 

and inertial coupling for the trajectory’s maximum velocity of 

approximately 0.6 radss. The neural network adjusts these 

gains dynamically, outputting increments ∆𝐾𝑝,𝑖 , ∆𝐾𝑑,𝑖  to 

form adaptive gains for the NN-adjusted control torque, we 

have: 

𝜏𝑖 = (∆𝐾𝑝,𝑖 + 𝐾𝑝,𝑖)𝑒𝑖 + (∆𝐾𝑑,𝑖 + 𝐾𝑑,𝑖)𝑒̇𝑖  (22) 

 

The network was trained using a dataset of error profiles 

from preliminary simulations, with backpropagation 

optimizing weights to minimize mean-squared error. 

Disturbances, modeled as random torques with a standard 

deviation of 0.1 Nm, were included to emulate surface 

irregularities, ensuring the controller adapts to realistic 

uncertainties. The training process converged after 200 

epochs, yielding gain adjustments within ±20 𝑁𝑚/𝑟𝑎𝑑 for 

∆𝐾𝑝,𝑖 and ±2 𝑁𝑚/𝑟𝑎𝑑 for ∆𝐾𝑑,𝑖 , maintaining total torques 

below 5 Nm to prevent actuator saturation. This design 

balances computational efficiency with performance, 

leveraging the robot’s dynamic model to simulate closed-

loop behavior over the 10-second trajectory. 

B. Simulation Results and Motion Impact 

The NN-PD controller was simulated using MATLAB, 

integrating the robot’s dynamics with the adaptive control 

law and disturbances. The simulation employed a numerical 

solver to compute joint angles and velocities, starting from 

initial conditions slightly offset from the desired trajectory to 

test convergence. Results demonstrate that the NN-PD 

controller achieves superior tracking performance compared 

to a fixed-gain PD controller, significantly enhancing the 

robot’s motion across its expanded workspace. The 

comparison between desired and actual joint positions 

without controller implementation is illustrated in Figure 6, 

demonstrating the system's inability to track reference 

trajectories in open-loop operation. 

The performance of the Neural Network-based 

Proportional-Derivative (NN-PD) controller is illustrated in 

Figure 7, which depicts the tracking accuracy of the desired 
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joint angles (𝜃𝑑1, 𝜃𝑑2, 𝜃𝑑3) against the actual joint angles 

(𝜃1, 𝜃2,  𝜃3) over a 10-second simulation period for a three 

degree-of-freedom robotic manipulator. The data, derived 

from a single-direction motion profile, demonstrate the 

controller’s ability to minimize tracking errors under the 

influence of friction, obstacle interactions, and Gaussian 

noise. For the first joint, the desired angle  𝜃𝑑1  decreases 

linearly from 0 rad to -0.0175 rad, while the actual angle 𝜃1 

starts at 0.1 rad and converges toward -0.0489 rad by t = 10 

s. The initial offset and slight overshoot suggest that the NN-

PD controller adjusts rapidly to align with the desired 

trajectory, achieving a root mean square error (RMSE) of 

approximately 0.031 rad. The second joint’s desired angle 

𝜃𝑑2  decreases from 0.1732 rad to -0.1084 rad, with the 

actual angle 𝜃2 starting at 0.1 rad and reaching -0.1415 rad, 

yielding an RMSE of 0.033 rad. This indicates a consistent 

tracking error, potentially due to the combined effects of 

friction and obstacle torques. The third joint shows 𝜃𝑑3 

decreasing from 0.1732 rad to 0.0004 rad, while  𝜃3 starts at 

0.1 rad and ends at -0.0335 rad, with an RMSE of 0.034 rad. 

The NN-PD controller demonstrates robust performance 

across all joints, maintaining tracking errors within 

acceptable bounds despite external disturbances. Compared 

to the multi-direction dataset, the single-direction profile 

results in smaller tracking errors, likely due to reduced 

dynamic complexity. 

 

Fig. 6. Desired and actual joint positions 

 

The NN-PD controller demonstrates robust performance 

across all joints, maintaining tracking errors within acceptable 

bounds despite external disturbances. 

 

Compared to the multi-direction dataset, the single-

direction profile results in smaller tracking errors, likely due 

to reduced dynamic complexity. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. NN-PD Controller: Joint Angle Tracking with 

Complex Disturbances, (a) single direction, (b) multiple 

direction, (c) movable direction 

 

In the single direction scenario, where motion is confined to 

a plane, the controller maintains joint tracking errors below 

0.01 radians after an initial transient of 0.3 seconds, a 
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fivefold improvement over the fixed PD’s 0.05 radians. The 

neural network adjusts gains in real-time, increasing 𝐾𝑝,𝑖 by 

up to 15 Nmsrad during sharp trajectory changes to reduce 

lag, and boosting 𝐾𝑑,𝑖 by 1.5 Nm·ssrad to damp oscillations 

when velocities peak. This results in smooth, serpentine 

motion, with the robot’s tip tracing the desired path within 

0.02 meters in Cartesian space, critical for planar navigation 

tasks. Control torques average 2.5 Nm, peaking at 4 Nm 

during disturbance spikes, well within motor limits, ensuring 

robust performance without excessive energy consumption. 

       For the multiple direction case, involving three-

dimensional motion, the NN-PD controller sustains errors 

below 0.015 radians, despite the added complexity of plane 

alternation. The network’s adaptability shines here, as it 

compensates for dynamic coupling between joints by fine-

tuning gains, reducing overshoot by 30% compared to fixed 

PD control. The robot’s tip follows intricate, non-planar 

paths with a positional accuracy of 0.03 meters, enabling 

applications like 3D inspection. Torque demands increase 

slightly, averaging 3 Nm with peaks at 4.5 Nm, reflecting the 

higher inertial loads, yet remaining feasible. The controller’s 

ability to stabilize motion across a 0.9-meter workspace 

underscores its effectiveness in handling the model’s 

enhanced kinematics. 

       In the movable direction scenario, with a translating 

and rotating base, the NN-PD controller achieves errors 

below 0.02 radians, adapting to the base’s motion by 

modulating gains dynamically. The network increases 𝐾𝑑,𝑖  

during base oscillations to suppress vibrations, cutting 

settling times by 40% relative to fixed PD. The robot 

maintains cohesive serpentine forms, with the tip tracking 

within 0.04 meters of the desired path, vital for mobile 

exploration. Torques peak at 4.8 Nm during rapid base shifts 

but average 3.2 Nm, demonstrating efficiency. The 

controller’s robustness against disturbances ensures stable 

motion across diverse configurations, from extended reaches 

to tight coils. The advantages of the NN-PD controller are 

manifold. First, its adaptability eliminates the need for 

manual gain tuning, a time-consuming process for nonlinear 

systems, as the neural network learns optimal adjustments 

from error patterns. Second, it enhances robustness, 

maintaining low errors (0.01–0.02 radians) under 

disturbances 10% of motor capacity, outperforming fixed PD 

by reducing error variance by 50%. Third, it ensures torque 

efficiency, keeping efforts below 5 Nm, critical for the 

robot’s 4.5 kg mass and high-inertia links. Finally, the NN-

PD’s scalability supports the expanded workspace, 

accommodating joint ranges up to 180 degrees and base 

mobility without compromising stability, unlike traditional 

PD controllers that falter at extreme configurations. These 

benefits position the NN-PD as a cornerstone for precise, 

versatile control, directly leveraging the robot’s kinematic 

advancements to enable applications from planar navigation 

to dynamic exploration. The Neural Network-based 

Proportional-Derivative (NN-PD) controller excels in 

trajectory tracking for the snake-like robot, achieving joint 

angle errors below 0.02 radians and reducing error variance 

by 50% compared to fixed-gain methods. 

 However, its computational complexity, driven by the 

MLP’s real-time gain adjustments, may cause delays in 

systems with more joints or on resource-constrained 

platforms. Scalability is limited, as higher degrees of 

freedom increase dynamic coupling and network 

complexity, potentially degrading performance. The reliance 

on simulated training data restricts generalization to real-

world disturbances like variable friction or sensor noise. 

Real-world implementation faces challenges, including 

hardware demands and lack of formal stability guarantees, 

critical for safety. 

 

C. Torque Analysis 
      A detailed figure presents a breakdown of the torque 

components acting on the three joints over the 2-second 

simulation, including control torques ( 𝜏control ), friction 

torques (𝜏𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛), obstacle torques (𝜏obstacle), and Gaussian 

noise torques ( 𝜏Gaussian ). These torques collectively 

influence the manipulator’s dynamics and the NN-PD 

controller’s performance. The control torques (𝜏control,1 , 

𝜏control,2, 𝜏control,3) are generated by the NN-PD controller 

to drive the joints toward their desired angles. For Joint 1, 

𝜏control,1  starts at -3.0 Nm, rapidly increases to 

approximately 1.59 Nm by t = 0.01 s, and stabilizes around 

1.4–1.6 Nm, with a mean of 1.48 Nm and a standard 

deviation of 0.14 Nm. This indicates a strong initial 

corrective action followed by steady-state control. For Joint 

2, 𝜏control,2 begins at 5.16 Nm, decreases to around 1.6 Nm, 

and fluctuates with a mean of 1.58 Nm and a standard 

deviation of 0.13 Nm, reflecting the controller’s response to 

the larger desired angle range. Joint 3’s 𝜏control,3  starts at 

4.16 Nm, stabilizes around 1.67 Nm (mean 1.65 Nm, 

standard deviation 0.12 Nm), showing consistent control 

effort. The control torques dominate the system dynamics, as 

their magnitudes are significantly larger than other torque. 

components. Friction torques ( 𝜏Friction,1 , 𝜏Friction,2 , 

𝜏Friction,3 ) oppose the motion of the joints. For Joint 1, 

𝜏Friction,1 starts at 0 Nm, peaks at 0.0653 Nm at t = 0.01 s, 

and decreases to 0.0293 Nm by t = 10 s, with a mean of 0.012 

Nm. Joint 2’s 𝜏Friction,2  transitions from -0.0587 Nm to -

0.0294 Nm, with a mean of -0.015 Nm, indicating a 

consistent resistive force. Joint 3’s 𝜏Friction,3 decreases from 

-0.0479 Nm to -0.0379 Nm, with a mean of -0.017 Nm. The 

friction torques are relatively small (less than 5% of control 

torques), suggesting that the system operates in a low-

friction environment, but their presence slightly degrades 

tracking accuracy. Obstacle torques (𝜏Obstacle,1 , 𝜏Obstacle,2 , 

𝜏Obstacle,3 ) represent external forces from environmental 

interactions. For Joint 1, 𝜏Obstacle,1 increases from 0 Nm to -

0.0211 Nm, with a mean of -0.010 Nm. Joint 2’s 𝜏Obstacle,2  

grows from -0.0001 Nm to -0.0120 Nm (mean -0.006 Nm), 

and Joint 3’s 𝜏Obstacle,3 reaches -0.0040 Nm (mean -0.002 

Nm). These torques are minimal, indicating limited obstacle 

interactions in the single-direction motion, but their gradual 

increase suggests cumulative environmental resistance over 

time. Gaussian noise torques ( 𝜏Gaussian,1 , 𝜏Gaussian,2 , 

𝜏Gaussian,3 ) introduce random disturbances. For Joint 1, 

𝜏Gaussian,1  ranges from -0.1432 Nm to 0.2583 Nm, with a 

mean of 0.002 Nm and a standard deviation of 0.094 Nm. 

Joint 2’s 𝜏Gaussian,2  varies between -0.2537 Nm and 0.2168 

Nm (mean 0.001 Nm, standard deviation 0.095 Nm), and 

Joint 3’s 𝜏Gaussian,3  spans -0.2913 Nm to 0.2489 Nm (mean 

0.002 Nm, standard deviation 0.096 Nm). The high 
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variability of Gaussian torques introduces stochastic 

perturbations, which the NN-PD controller effectively 

mitigates, as evidenced by the low tracking errors. The 

torque analysis reveals that control torques dominate the 

system’s dynamics, with friction, obstacle, and Gaussian 

torques acting as disturbances. The NN-PD controller 

successfully compensates for these disturbances, 

maintaining stable tracking performance. Compared to the 

multi-direction dataset, the single-direction motion exhibits 

lower torque variability, particularly in obstacle and 

Gaussian components, contributing to improved tracking 

accuracy. 

 

Fig. 8. Torque Components Analysis for Joint Dynamics 

 

V. Future Work 

The successful simulation and validation of the snake-like 

robot’s kinematic model and Neural Network-based 

Proportional-Derivative (NN-PD) controller provide a 

strong foundation for transitioning to a physical prototype, 

enabling practical deployment in complex, unstructured 

environments such as search-and-rescue missions, industrial 

inspections, and planetary exploration. Future research will 

focus on developing a cost-effective and optimized 

prototype, emphasizing efficient materials, modular 

mechanisms, and embedded systems to enhance autonomy, 

computational efficiency, and operational robustness while 

minimizing fabrication costs. 

A primary objective is the implementation of the NN-PD 

controller on an NVIDIA Jetson Nano, a cost-effective 

embedded platform tailored for AI applications. The Jetson 

Nano’s quad-core ARM Cortex-A57 CPU and 128-core 

Maxwell GPU offer sufficient computational power for real-

time execution of the multilayer perceptron (MLP) within 

the NN-PD controller, enabling dynamic gain adjustments 

for the robot’s three joints under varying environmental 

conditions. The controller’s neural network, trained offline 

using simulated data, will be optimized for low-latency 

inference (targeting under 10 ms per control cycle) to ensure 

precise trajectory tracking. 

 Leveraging open-source deep learning frameworks like 

TensorFlow or PyTorch, the Jetson Nano will support 

potential online learning capabilities, allowing the robot to 

adapt to real-world disturbances such as variable friction or 

obstacle interactions, enhancing its applicability in dynamic 

settings. 

 For actuation, the prototype will utilize Dynamixel 

XL430-W250-T servo motors, selected for their high torque-

to-weight ratio (up to 1.4 Nm at 12 V), precision, and 

affordability, making them ideal for a cost-effective snake-

like robot. Each of the three joints will be driven by an 

XL430 motor, which integrates position feedback and PID 

control, complementing the NN-PD framework with low-

level joint control and real-time positional data to achieve 

joint angle errors below 0.02 radians. The motors’ compact 

design and low power consumption ensure energy efficiency, 

critical for prolonged operation in resource-constrained 

environments. 

 The mechanical design prioritizes cost-effective and 

lightweight materials to balance structural integrity with 

affordability. The robot’s four links, each 15.7 cm long and 

6 cm in diameter, will be fabricated from anodized aluminum 

(6061 alloy), chosen for its high strength-to-weight ratio, 

corrosion resistance, and low cost compared to alternatives 

like carbon fiber or titanium. To further reduce expenses, 

select non-load-bearing components, such as joint housings, 

will use high-strength ABS polymer, produced via 3D 

printing to minimize machining costs while maintaining 

durability. This hybrid material approach reduces the 

prototype’s total weight to approximately 4.5 kg, aligning 

with the simulated model, and keeps fabrication costs low by 

leveraging widely available materials and additive 

manufacturing techniques. 

The serpentine locomotion mechanism is designed for 

modularity and simplicity to ensure cost-effective assembly 

and maintenance. Each joint employs a single-axis revolute 

mechanism driven by the XL430 motor, connected via 

standardized aluminum brackets to facilitate easy assembly 

and scalability. The modular design allows for rapid 

replacement or addition of links, enabling future expansions 

to increase the robot’s degrees of freedom without 

significant redesign. The serpentine motion is achieved 

through sequential actuation of the three joints, following the 

sinusoidal trajectory validated in simulation (Section 2.F), 

with joint angles ranging up to 180 degrees to maximize 

workspace flexibility (0.9-meter diameter). To enhance 

maneuverability in confined spaces, the mechanism 

incorporates low-friction PTFE (Teflon) contact pads at the 

base of each link, reducing surface resistance and wear 

during lateral undulation or concertina motion, common in 

snake-like locomotion. This approach minimizes mechanical 

complexity, reducing both fabrication costs and maintenance 

requirements compared to more intricate multi-axis or 

continuum designs. 

 To address real-world challenges, the prototype will 

integrate cost-effective sensors, including inertial 

measurement units (IMUs) and forcestorque sensors, to 
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capture environmental interactions and refine the NN-PD 

controller’s disturbance rejection capabilities. These sensors, 

selected for their low cost and compatibility with the Jetson 

Nano (e.g., MPU-6050 IMUs), will provide data on joint 

accelerations and external forces, enabling adaptive gain 

tuning in response to complex disturbances like those 

modeled in Section 2.D (velocity-dependent friction and 

periodic obstacle interactions). This closed-loop system 

enhances the robot’s robustness for applications such as 

pipeline inspection or debris navigation, where precise 

control under unpredictable conditions is critical. 

Future research will explore scalability by increasing the 

number of joints and links, potentially extending the 

workspace beyond 0.9 meters, while maintaining cost 

efficiency through modular design and affordable materials. 

Advanced control strategies, such as reinforcement learning 

or hybrid neural-adaptive control, will be investigated to 

improve the NN-PD controller’s generalization across 

diverse trajectories and environments. Experimental 

validation on the physical prototype will quantify 

performance under real-world disturbances, targeting joint 

angle errors below 0.02 radians and torque demands within 

the XL430’s 1.4 Nm limit. Energy efficiency and thermal 

management will be prioritized, leveraging the Jetson 

Nano’s low power consumption (5–10 W) and the XL430’s 

efficient actuation, with potential integration of onboard 

power management systems to extend operational duration. 

To further enhance cost-effectiveness, future iterations may 

incorporate recycled or bio-inspired materials, such as 

flexible polymer composites for select links, to improve 

adaptability in highly confined spaces while keeping costs 

low. These advancements will position the snake-like robot 

as a scalable, affordable, and versatile platform, bridging the 

gap between simulation and practical deployment, and 

contributing to the field of hyper-redundant robotics for real-

world applications. 

 

VI. Conclusions 

This study presents a significant advancement in the 

design and control of a snake-like robot with three joints and 

four links, achieving a workspace diameter of 0.9 meters 

through an expanded 180-degree joint range and virtual base 

rotation. The integration of a Neural Network-based 

Proportional-Derivative (NN-PD) controller enables precise 

trajectory tracking, maintaining joint angle errors below 0.02 

radians and control torques under 5 Nm, even under complex 

disturbances including Gaussian noise, velocity-dependent 

friction, and obstacle interactions. The newly introduced 

complex disturbance model enhances the simulation’s 

fidelity, capturing real-world uncertainties such as surface 

irregularities and dynamic environmental interactions, 

critical for applications like search-and-rescue and industrial 

inspection. The revised numerical solution, implemented 

using MATLAB’s ode23 solver, provides high-accuracy 

torque and motion profiles across single-direction, multiple 

direction, and movable-direction scenarios, validating the 

robot’s versatility. The NN-PD controller’s adaptive gain 

tuning reduces error variance by 50% compared to fixed gain 

methods, demonstrating superior robustness. The added 

torque analysis elucidates the interplay of control, friction, 

obstacle, and noise torques, confirming the controller’s 

ability to maintain stability within motor limits. These 

advancements establish a scalable framework for hyper-

redundant robotics, paving the way for practical deployment 

in unstructured environments. Future work will focus on 

constructing a cost-effective prototype using NVIDIA Jetson 

Nano and Dynamixel XL430 motors, incorporating 

lightweight aluminum and ABS materials to validate the 

simulated performance in real-world conditions, further 

enhancing the robot’s applicability to complex tasks. 
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