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This paper designs a protocol for leader-follower flocking problem, for multi-agent time-

depend Lagrange systems (MATDLS) with external disturbances problem. The 

mechanical systems with varying mass can be modeled with time-depend Lagrange 

systems. The variable mass causes to uncertainty in the model. We suppose that the 

virtual leader has a bounded acceleration, and only its neighbor agents can receive its 

information. The study of leader-follower flocking with dynamic leader/virtual leader 

(LFFDL) for MATDLS under external disturbance problem is very challengeable.  

An adaptive estimator is allocated to each agent for estimation of the leader's velocity, 

and an adaptive control is proposed to solve LFFDL problem. The benefits of our 

protocol are both fully-distributed and continuous. Under the proposed control protocol, 

each follower's velocity asymptotically tends to that of the virtual leader, the group’s 

network stays connected, and no collision happens between agents. In the end, we 

perform some simulations to show the theoretical results validation. 

 

NOMENCLATURE    

𝜂𝑖 position of agent i 𝜙(‖𝜂𝑖𝑗‖) potential function 

�̇�𝑖 velocity of agent i �̂�𝑛𝜃+1𝑖
 adaptive gain of the i-th agent 

𝜂𝑟 virtual leader’s position  𝜎𝑖 controller of agent i 
�̇�𝑟 virtual leader’s velocity 𝜂𝑖𝑗 relative position of agents i and j 

𝑢𝑐𝑜𝑝𝑖
 is the cooperative control of each agent   
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I. Introduction 

Flocking is a branch of cooperative control that has a wide 

application in the robots group and automobile vehicles’ control. 

For achieving a flocking motion, while agents endeavor to stay 

in the group and avoid the collision, they should reach their 

velocity to the neighbors.  Many mathematical models were 

proposed to solve flocking motion challenges over the years, 

such as the obstacle avoidance problem, the target-tracking 

problem, and the connectivity-preserving problem [1-10]. The 

leaderless flocking algorithm was studied in [2], and the 

theoretical framework of the leader-follower flocking was 

presented in [3]. The authors of [4] introduced an algorithm for 

the case that the states of the virtual leader are not measured by 

all agents. Because, under the mentioned algorithms, the group 

was fragmented, the connectivity-preserving flocking 

algorithms were investigated by the researcher [5]. Furthermore, 

the flocking with the dynamic leader was studied in [6]. 

The flocking study under practical problems such as 

uncertainties and external disturbance was performed in [11-19]. 

The existence of uncertainty and external disturbance in the 

agents' dynamics may cause the group to fragment or collide the 

agents together. Authors in [11-15] studied the multi-agent 

systems having unknown parametric uncertainty and no external 

disturbance problem, while in [16], they did not consider 

uncertainty problems. Whereas, it is of great challenge to design 

distributed controllers for the flocking problem of multi-agent 

systems, in the presence of both of uncertainty and external 

disturbance problem, especially for the time-variant uncertainty.  

Furthermore, since most of the results mentioned above 

required a global information of the virtual leader for designing 

of controller, especially for the dynamic leader, if both the 

uncertainty and external disturbance present in agents' dynamics, 

the flocking problem with a virtual leader will be more 

challengeable than leaderless flocking. In this contest, the 

proposed protocols in refs. [11-12, 14, 17-19] were leader-

follower. 

Moreover, the agents' dynamics considered in these works 

included linear second-order dynamics [15, 18], nonlinear 

double-integrator [13-14, 16-17], and Lagrange dynamics [11, 

12, 19]. Among the aforementioned dynamics, the Lagrange 

dynamics covering the nonlinear double-integrator dynamic and 

a specific class of linear second-order dynamics were more 

applicable [20-21]. On the other hand, there are some 

mechanical systems with varying mass, [27, 28], that are 

modeled by Lagrange systems. These systems are called time-

depend Lagrange systems. The variation of mass into such 

systems can cause uncertainty in the dynamic of agents.   

In recent years, researchers mainly paid attention to the design 

of fully-distributed and continuous cooperative controllers. The 

fully-distributed protocol needs no global information of agents’ 

network, the virtual leader, or the initial agents’ network in its 

structure. Also, as we know, the continuous protocols' advantage 

is that they have no chattering potential. 

In the aforementioned works, only the proposed protocol in 

ref. [11, 19] was fully-distributed and those in refs. [14, 17-18] 

were continuous, but except of ref. [19], there was no both 

continuous and fully-distributed protocol. To tackle the demand 

to the global information of the leader's velocity in the leader-

follower protocols, authors in ref. [22] proposed an estimator for 

estimating the leader's velocity to synchronize the multi-agent 

systems with Lagrange dynamic. Ref. [11], adding the derivative 

of the potential function to the estimator, extended this estimator 

to the flocking problem. 

Therefore, here we aim to investigate a continuous fully-

distributed adaptive control (CFDAC) for leader-follower 

flocking of MATDLS with external disturbances problem. The 

main contributions are as follows. 

1. We consider a time-depend Lagrange dynamic, is general 

form Lagrange dynamic of this dynamic covers various physical 

and engineering systems and is more practical. Also, we suppose 

the virtual leader moves with a bounded acceleration, and only 

the informed agents can receive its information. We assume that 

the agents are subject to the TVUED problem. To the author's 

best knowledge, there are very few works that study uncertainty 

and external disturbance problems together, especially for time-

varying uncertainty. Compared to the existing works [x], our 

problem is more challenging; we detail it in Remarks 5. 

2. Unlike plenty of works performed on adaptive control of 

time-invariant systems, there are few works on time-varying 

systems [22-25]. The non-zero derivative of uncertain 

parameters causes many challenges; some assumptions are 

considered on the parameter variations' rate to handle this 

problem. Contrary to these methods limiting the variation rate of 

parameters, some works do not restrict the parameters' 

derivative, [22-23], and only suppose a compact set for them. 

This paper also assumes that the changes of uncertain parameters 

are inside an arbitrarily unknown compact set and put no 

limitation on the uncertain parameters' variation rate. 

3. To solve the above challenges, this paper considers an 

estimator for each agent to estimate the virtual leader's velocity. 

By standard adaptive laws and deriving Lemma 2, we propose a 

continuous and fully-distributed protocol for flocking multi-

agent systems. In the fully-distributed controller, there is no need 

for global information of the virtual leader for whole agents and 

the initial neighboring graph in the controller structure. It should 

be noted that though the controller [11] is fully-distributed, it did 

not apply to the MALS with TVUED problem. Moreover, the 

protocol in ref. [11] utilizing 1-norm signals led to an unbounded 

increase in the adaptive gains in the presence of external 

disturbance. Also, since that protocol was designed for constant 

parametric uncertainty with the non-zero derivative of uncertain 

parameters, it could not provide an asymptotic flocking motion. 

Besides, since it is discontinuous, it led to the chattering 

phenomenon subject to external disturbance. Therefore, 

compared with the protocol in ref. [11], our proposed protocol is 

more applicable and useful. 
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The remains of the paper are given as follows. Sections 2, 3, 

and 4 are organized to represent the problem statement, the main 

theoretical results, and numerical simulations. The conclusions 

of this paper are provided in Section 5.  

 

II. Problem Statement 

Suppose a group of  N agents intend to reach a flocking 

motion. Each agent can sense neighbors by communicating 

equipment. The neighboring graph of agents is undirected 

and time-varying, denoted by graph g(t) = (ν, e(t)). Vertices 

in the graph g(t) indicate the agents, and edges e(t) indicate 

the links between neighbor agents. Also, all agent’s 

communication radius, r is assumed the same. Consider two 

positive constants ε̂ and ε̌ such ε̂ ≤ ε̌ < 𝑟, then e(t) =

{(i, j)|i, j ∈ ν} which is the set of links is generated as 

1. The initial links, e(0) is generated such 

that e(0) = {(i, j)|ε̂ < ‖ηi(0) − ηj(0)‖ < 𝑟 −

ε̌, i, j ∈ ν}, where ηi(0) and ηj(0) are respectively 

initial positions of agents i and j. 

2. If (i, j) ∉ e(t−) and ‖ηi(t) − ηj(t)‖ < 𝑟 −

ε̌, then (i, j) is a newly added link to e(t). 

3. If ‖ηi(t) − ηj(t)‖ ≥ r, then (i, j) ∉ e(t). 

In view of the definition proposed for the links’ set, each 

agent’s neighbor nodes are specified by the set: ni(t) =

{j|(i, j) ∈ e(t), j ∈ ν}. 

Consider the definition of the adjacent matrix of the 

graph g(t), 𝒜(t) = [𝒶ij], where  𝒶ij = 𝒶ji = 1 if agents i and 

j are neighbor, otherwise 𝒶ij = 𝒶ji = 0. Also, L(t) = [lij] 

denotes the Laplacian matrix of graph g(t)where lii =

∑ 𝒶ijj≠i , lij = −𝒶ij for i ≠ j, [3].  

Consider the agents as the following Lagrange dynamics  

Mi(ηi)η̈i + Ci(ηi, η̇i)η̇i + Gi(ηi) = σi + ϱi(t), (1) 

where i = 1, … , N, ηi, η̇i ∈ ℝn are the position and velocity 

of agent i,  respectively. Mi(ηi) is the  n × n symmetric inertia 

matrix, Ci(ηi, η̇i) is the Coriolis and centrifugal force, Gi(ηi) 

is the vector of gravitational force. Also, σi ∈ ℝn is the input 

of agent i, and ϱi ∈ ℝnd  is the unknown acted external 

disturbance on agent i. The Lagrange dynamics have the 

following properties 

Prop. 1: There exist positive constants m, m,  c, g such 

that m ≤ ‖Mi(ηi)‖ ≤ m, ‖Ci(ηi, η̇i)‖ ≤ c‖η̇i‖, ‖Gi(ηi)‖ ≤

g. 

Prop. 2: matrix  Ṁi(ηi) − 2Ci(ηi, η̇i) is skew symmetric. 

Prop. 3: The linearly parameterization property of the 

Lagrange system (1) is defined as Mi(ηi)x + Ci(ηi, η̇i)y +

Gi(ηi) = Yi(ηi, η̇i, x, y)ϑi for all vectors z, v ∈ ℝn, where 

Yi(ηi, η̇i, z, v) is the regressor matrix and ϑi ∈ ℝnθ  is 

considered as a unknown time-varying vector. 

Remark 1: In most physical systems modeled by 

Lagrange dynamics, the parameter ϑi is a known/unknown 

constant, but in some systems the parameter θi is time-

varying, [26-28]. These systems include time-depend 

Lagrange systems such as mechanical systems with varying 

mass [27, 28].  

Assumption 1: Consider unknown constants ϱ̅ and ϑ̅  such 

that ‖ϑi(t)‖ ≤ ϑ̅ and ‖ϱi(t)‖ ≤ ϱ̅. 

Remark 2: Assumption 1 is standard in the adaptive 

control of the time-varying systems. Authors in ref. [22] 

demonstrated by simulation results, even under the 

significant variation in parameters, the system can remain 

stable in many cases. Also, they proved that under the 

accessibility assumption of states, the existence of a compact 

set for parameters, and using a standard adaptive law, one can 

guarantee states to be bounded.  

Therefore, here we also assume that the system's states are 

measurable. Our controller is constructed a feedback of states 

of each agent and a cooperative protocol. The cooperative 

protocol in flocking contains the gradient of an artificial 

potential function to avoid losing the existing links and 

collision between agents, a term for velocity consensus of all 

agents, and a feedback of virtual leader's state. If an agent can 

measure the virtual leader's states, it is informed; otherwise, 

it is uninformed. Suppose the virtual leader's dynamic as 

η̈r = σr,         (2) 

where ηr, η̇r ∈ ℝn are respectively virtual leader’s position 

and velocity vectors, and σr is its input.  

Assumption 2: The virtual leader’s velocity η̇r is bounded. 

Assumption 3: There is a positive constant σ̅ such that 

‖σr‖ ≤ σ̅. 

The following potential function is used in the cooperative 

protocol 

ϕ(‖ηij‖) =
r

‖ηij‖(r−‖ηij‖)
, 0 < ‖ηij‖ < 𝑟,   (3) 

where ηij ∈ ℝn is the relative position of agents i and j, that 

is, ηij = ηi − ηj. Note that since potential function (3) tends 

to infinity when the distance among two agents tends to r or 

zero, it could maintain the initial links connected and avoid 

collision among agents. 

In the following, we define the objective control of 

flocking. 

Definition 1: Consider a group of agents pursuing a virtual 

leader. Suppose that their initial network graph g(0) is 

connected and initial energy V(0) is finite. When we say that 

the group achieve a flocking motion, under the controller 

σi(t) the following properties are realized: 

1- The initial links of graph g(0) are preserved during the 

motion, that is if (i, j) ∈ e(0) , i, j = 1, … , N, then ‖ηi(t) −

ηj(t)‖ < 𝑟 for all t > 0. 

2- No pair of agents collide together, that is ‖ηi(t) −

ηj(t)‖ > 0, 𝑖, 𝑗 = 1, … , 𝑁  for all t > 0. 
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3- All agents’ velocity asymptotically tends to the virtual 

leader’s velocity, ηr, that islim
t→∞

(ηi(t) − ηr(t)) = 0, i =

1, … , N. 

Consider the following Lemmas that we will use for proof 

of results. Note that in them, we put the eigen values of matrix 

Ρ ∈ ℝN×N in the increasing order as Re{λ1(Ρ)} ≤

Re{λ2(Ρ)} ≤ ⋯ ≤ Re{λN(Ρ)}. 

Lemma 1 [29]: Consider the graphs 𝑔1 and 𝑔2, which are 

undirected and of order 𝑁. Denote their Laplacian matrices 

by 𝐿1 and 𝐿2, respectively. Suppose by adding some edge(s) 

into the graph 𝑔1, 𝑔2 is generated. Consider non-zero matrix 

𝛤 = 𝑑𝑖𝑎𝑔(𝛾1, … , 𝛾𝑁), where 𝛾𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑁. Then, 

 𝜆1(𝐿2 + 𝛤) ≥ 𝜆1(𝐿1 + 𝛤), for all 𝑖 = 1,2, … , 𝑁. 

Lemma 2: Consider a network graph 𝐺(𝑡) of order 𝑁 , 

whose adjacent matrix elements are 𝒶𝑖𝑗  and Laplacian matrix 

is. Also, matrix Γ, defined in Lemma 1. Denote 𝑥(𝑡) =

[𝑥1(𝑡), … , 𝑥𝑁(𝑡)]𝑇, where 𝑥𝑖 ∈ ℝ𝑛 is a state variable of node 

𝑖 , 𝑖 = 1,2, … , 𝑁. Then, 

∑ ‖∑ 𝒶𝑖𝑗(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))𝑗∈𝑁𝑖(𝑡) + 𝛾𝑖𝑥𝑖‖𝑁
𝑖=1 ≥ √𝜆1((𝐿 + Γ)2)‖𝑥‖, 

where  𝑁𝑖(𝑡) indicates the neighboring space of node 𝑖 at 

each instant 𝑡. 

Proof: Break up matrices 𝐿 and 𝛤 to 𝑁 row matrices 

respectively as 𝐿 = [𝐿1
𝑇 ⋯ 𝐿𝑁

𝑇] and 𝛤 =

[𝛤1
𝑇 ⋯ 𝛤𝑁

𝑇], where 𝐿𝑖 ∈ ℝ1×𝑛,𝛤𝑖 ∈ ℝ1×𝑛, 𝑖 = 1, … 𝑁. 

Also, 𝐿𝑖 and 𝛤𝑖  represent respectively the 𝑖𝑡ℎ row of matrix 𝐿 

and matrix 𝛤. Then,  ∑ 𝒶𝑖𝑗(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))𝑗∈𝑁𝑖(𝑡) + 𝛾𝑖𝑥𝑖 =

((𝐿𝑖 + 𝛤𝑖) ⊗ 𝐼𝑛)𝑥. Thus, 

∑ ‖ ∑ 𝒶𝑖𝑗(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))

𝑗∈𝑁𝑖(𝑡)

+ 𝛾𝑖𝑥𝑖‖ =

𝑁

𝑖=1

∑‖((𝐿𝑖 + Γ𝑖) ⊗ 𝐼𝑛)𝑥‖

𝑁

𝑖=1

≥ ‖[
((𝐿1 + Γ1) ⊗ 𝐼𝑛)𝑥

⋮
((𝐿𝑁 + Γ𝑁) ⊗ 𝐼𝑛)𝑥

]‖ =

‖((𝐿 + Γ) ⊗ 𝐼𝑛)𝑥‖ = √𝑥𝑇((𝐿 + Γ) ⊗ 𝐼𝑛)((𝐿 + Γ) ⊗ 𝐼𝑛)𝑥 ≥

√𝜆1((𝐿 + Γ)2)‖𝑥‖2 = √𝜆1((𝐿 + Γ)2)‖𝑥‖.

 

 

III. Main Results 

In this section, we design a fully-distributed adaptive control 

for the systems (1). Our protocol comprises the continuous 

adaptive control input and estimator. Since all agents could not 

sense the virtual leader's information, for estimation of the 

virtual leader's velocity, an estimator is designed for each agent. 

Before moving on, denote the velocity error by �̇�𝑖 = �̇�𝑖 − �̇�𝛾, 

where �̇�𝑖 − �̇�𝑗 = �̇�𝑖 − �̇�𝑗. Also, consider the auxiliary variables 

𝜉𝑖 = 𝜉𝑖 − �̇�𝛾 and 𝑧𝑖 = �̇�𝑖 − 𝜉𝑖 = 𝜂�̇� − 𝜉𝑖. Consider the estimator 

of each agent as 

�̇�𝑖 = − ∑ 𝛻𝜙�̃�𝑖
(‖𝜂𝑖𝑗‖)𝑗∈𝑁𝑖(𝑡)

     −𝑑1 ∑ 𝒶𝑖𝑗(�̇�𝑖 − �̇�𝑗)𝑗∈𝑁𝑖(𝑡) − 𝑑2𝛾𝑖�̇�𝑖 − 𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖
𝜉𝑖).

(4) 

where  𝑑1 and 𝑑2 are positive constants, and  𝛾𝑖 = 1 is for 

informed agents, and 𝛾𝑖 = 0, otherwise. Also, �̂�𝑛𝜃+1𝑖
, 𝑖 =

1, … , 𝑁, are the adaptive gains. 

Remark 3: In [21], to estimate the leader’s velocity, an 

estimator idea was introduced for synchronization of the MALS. 

In [11], the authors extended it for the flocking problem and 

added the partial derivative of the potential function. Both of 

these protocols were based on the Sign function. Here, since we 

aim to design a continuous controller, we add the adaptive term 

𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖
𝜉𝑖) to estimator (4).  

The controller of each agent 𝑖 = 1,2, … , 𝑁, is as 

𝜎𝑖 = 𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)
𝑇

𝒆�̂�𝒊 − 𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖
𝜉𝑖) − 𝜇𝑧𝑖 + 𝜎𝑐𝑜𝑝𝑖

,(5) 

where 𝜇 is an positive arbitrary design parameter, 𝑢𝑐𝑜𝑝𝑖
 is the 

cooperative control of each agent, and 𝒆�̂�𝒊 = [
𝑒�̂�1𝑖

⋮

𝑒
�̂�𝑛𝜃𝑖

], �̂�𝑝𝑖
, 𝑝 =

1, … , 𝑛𝜃 , 𝑖 = 1, … , 𝑁, are adaptive gains given by 

�̇̂�𝑝𝑖
= −𝑚𝑝𝑖

‖𝑧𝑖‖‖𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)‖, 𝑝 = 1, … , 𝑛𝜃 ,

�̇̂�𝑛𝜃+1𝑖
= −𝑚𝑛𝜃+1𝑖

(‖∑ 𝒶𝑖𝑗(�̇�𝑖 − �̇�𝑗)𝑗∈𝑛𝑖(𝑡) + 𝛾𝑖�̇�𝑖‖ + ‖𝑧𝑖‖),
  (6) 

where 𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖) is the  𝑝𝑡ℎ column of matrix 

𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖), and 𝑚𝑝𝑖
, 𝑝 = 1, … , 𝑛𝜃, 𝑖 = 1, … , 𝑁 and 

𝑚𝑛𝜃+1𝑖
are some positive parameters chosen arbitrarily. Also,  

𝜎𝑐𝑜𝑝𝑖
= − ∑ 𝛻𝜙�̃�𝑖

(‖𝜂𝑖𝑗‖)𝑗∈𝑛𝑖(𝑡)  − 𝑑1 ∑ 𝒶𝑖𝑗(�̇�𝑖 − �̇�𝑗)𝑗∈𝑛𝑖(𝑡) − 𝑑2𝛾𝑖�̇�𝑖 .

      (7) 

By using Prop. 2, one can get 𝑀𝑖(𝜂𝑖)�̇�𝑖 + 𝐶𝑖(𝜂𝑖 , �̇�𝑖)𝜉𝑖 +

𝐺𝑖(𝜂𝑖) = 𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)𝜗𝑖. Then, by using 𝑧𝑖 = �̇�𝑖 − 𝜉𝑖 and (1), 

we can obtain that 

𝑀𝑖(𝜂𝑖)�̇�𝑖 + 𝐶𝑖(𝜂𝑖 , �̇�𝑖)𝑧𝑖 = 𝜎𝑖 + 𝜚𝑖 − 𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)𝜗𝑖.  (8) 

Consider the following Theorem. 

Theorem 1: Consider dynamic (1), which represent the 

agents’ dynamic of a multi-agent group tracking a leader with 

dynamic (2). Suppose that Assumptions 1-3 hold, the initial 

graph 𝑔(0) is connected, and the initial energy 𝑉(0) is finite.  

Then, the control protocol (4)-(7) solves the flocking problem in 

Definition 1. 

We define the following energy function for the group 

𝑉 = 𝑒𝑉1+𝑉2+𝑉3 ,      (9) 

where  

𝑉1 =
1

2
∑ ∑ 𝜙(‖𝜂𝑖𝑗‖),𝑁

𝑗=1,𝑗≠𝑖
𝑁
𝑖=1                 

𝑉2 =
1

2
(∑ 𝑧𝑖

𝑇𝑀𝑖(𝑞𝑖)𝑧𝑖
𝑁
𝑖=1 + ∑ 𝜉𝑖

𝑇
𝜉𝑖)𝑁

𝑖=1 ,

𝑉3 = ∑ 𝛽𝑝
𝑛𝜃
𝑝=1

∑ �̂�𝑝𝑖

𝑁
𝑖=1 + 𝛽𝑛𝜃+1 ∑ �̂�𝑛𝜃+1𝑖

𝑁
𝑖=1 ,

     (10) 

with 𝛽𝑝 and 𝛽𝑛𝜃+1 being some positive constants chosen by 

𝛽𝑝 ≥ 𝑚𝑎𝑥 {
(�̅� +𝑒

�̂�𝑝𝑖
(0)

)

𝑚𝑝𝑖

|𝑖 = 1, … , 𝑁}, 𝑝 = 1, … , 𝑛𝜃 ,

𝛽𝑛𝜃+1 ≥ 𝑚𝑎𝑥 {{
√𝑁(√𝑛+�̅�))

�̅�𝑛𝜃+1√𝜆1((𝐿(0)+𝛤)2)
,

√𝑁(�̅�+�̅�)

�̅�𝑛𝜃+1
}|𝑖 = 1, … , 𝑁},

�̅�𝑛𝜃+1 = 𝑚𝑖𝑛 {𝑚𝑛𝜃+1𝑖
|𝑖 = 1, … , 𝑁}.

  

Clearly, 𝑉 is positive. 
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Proof: Let the network graph 𝑔(𝑡) switch at times 

𝑡𝑘  ( 𝑘 = 1,2, … ), and it is fixed in intervals [𝑡𝑘−1, 𝑡𝑘), 𝑘 =

1,2, …. Then, the derivative of 𝑉(𝑡) in these interval is given by 

�̇� = 𝑒𝑉1+𝑉2+𝑉3(�̇�1 + �̇�2 + �̇�3), where 

�̇�1 = ∑ ∑ 𝛻𝜙�̃�𝑖
(‖𝜂𝑖𝑗‖)𝑁

𝑗=1,𝑗≠𝑖
𝑁
𝑖=1 �̇�𝑖

     = ∑ (−𝜎𝑐𝑜𝑝𝑖
− 𝑑1

𝑁
𝑖=1 ∑ 𝒶𝑖𝑗(�̇�𝑖 − �̇�𝑗)𝑗∈𝑛𝑖(𝑡) − 𝑑2�̇�𝑖)𝑇�̇�𝑖 .

 (11) 

From (2), (4) and (7), it follows that �̇�𝑖 = �̇�𝑖 − �̈�𝛾 = 𝜎𝑐𝑜𝑝𝑖
−

𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖
𝜉𝑖) − 𝜎𝛾. Thus, by recent relation and (5)-(8), we 

have 

�̇�2 = (∑ 𝑧𝑖
𝑇𝑀𝑖(𝜂𝑖)�̇�𝑖

𝑁
𝑖=1 +

1

2
𝑧𝑖

𝑇�̇�𝑖(𝜂𝑖)𝑧𝑖) + ∑ 𝜉𝑖
𝑇

𝜉̇
𝑖

𝑁
𝑖=1

= ∑ 𝑧𝑖
𝑇𝑁

𝑖=1 (−𝐶𝑖(𝜂𝑖 , �̇�𝑖)𝑧𝑖 + 𝜎𝑖 + 𝜚𝑖 − 𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)𝜗𝑖 +
1

2
�̇�𝑖(𝜂𝑖)𝑧𝑖)

    + ∑ 𝜉𝑖
𝑇

(𝜎𝑐𝑜𝑝𝑖
− 𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖

𝜉𝑖) − 𝜎𝑟
𝑁
𝑖=1 )

= ∑ 𝑧𝑖
𝑇𝑁

𝑖=1 ((−𝐶𝑖(𝜂𝑖 , �̇�𝑖) +
1

2
�̇�𝑖(𝜂𝑖)) + 𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)

𝑇
𝒆�̂�𝒊

    −𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖
𝜉𝑖)) − 𝜇1𝑧𝑖 + 𝜎𝑐𝑜𝑝𝑖

+ 𝜚𝑖 − 𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)𝜗𝑖)

+ ∑ 𝜉𝑖
𝑇

(𝜎𝑐𝑜𝑝𝑖
− 𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖

𝜉𝑖) − 𝜎𝑟
𝑁
𝑖=1 ).

       (12) 

From Prop. 2, 𝑧𝑖
𝑇(−𝐶𝑖(𝜂𝑖 , �̇�𝑖) +

1

2
�̇�𝑖(𝜂𝑖))𝑧𝑖 is a skew matrix, 

and by using that 𝑧𝑖 = �̇�𝑖 − 𝜉𝑖, we get (∑ 𝑧𝑖
𝑇𝜎𝑐𝑜𝑝𝑖

𝑁
𝑖=𝑛𝑙1

+

∑ 𝜉𝑖

𝑇
𝜎𝑐𝑜𝑝𝑖

𝑁
𝑖=1 ) = ∑ �̇�𝑖

𝑇
𝜎𝑐𝑜𝑝𝑖

𝑁
𝑖=𝑛𝑙

, and ∑ (𝑧𝑖 +𝑁
𝑖=1

𝜉𝑖)𝑇𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖
𝜉𝑖) = ∑ �̇�𝑖

𝑇
𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖

𝜉𝑖)𝑁
𝑖=1 . Thus, one can 

obtain 

�̇�2 ≤ ∑ (‖𝜗𝑖‖‖𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)‖ + ‖𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)
𝑇

𝒆�̂�𝒊‖𝑁
𝑖=1

           −𝜇1‖𝑧𝑖‖)‖𝑧𝑖‖ + ∑ 𝑧𝑖
𝑇𝑁

𝑖=1 𝜚𝑖

           + ∑ �̇�𝑖
𝑇

(𝜎𝑐𝑜𝑝𝑖
− 𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖

𝜉𝑖)) − ∑ 𝜉𝑖
𝑇

𝜎𝑟
𝑁
𝑖=1 ,𝑁

𝑖=1

(13) 

where  ∑ �̇�𝑖
𝑇

𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑖
𝜉𝑖)

𝑁
𝑖=1 =

[�̇�1
𝑇(𝑡) ⋯ �̇�𝑁

𝑇 (𝑡)] [

𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+11
𝜉1)

⋮
𝑡𝑎𝑛ℎ (�̂�𝑛𝜃+1𝑁

𝜉𝑁)

] ≤ √𝑛𝑁‖�̇�‖where �̇�(𝑡) =

[�̇�1
𝑇(𝑡) ⋯ �̇�𝑁

𝑇 (𝑡)]
𝑇
. Note that from |𝑡𝑎𝑛ℎ (. )| ≤ 1, the recent 

inequality has been obtained. Also,  ∑ 𝜉𝑖

𝑇
𝜎𝑟

𝑁
𝑖=1 =

[𝜉1

𝑇
… 𝜉𝑁

𝑇
] [

𝜎𝑟

⋮
𝜎𝑟

] ≤ √𝑁�̅�‖𝜉‖ = √𝑁�̅� ‖�̇� − 𝑧‖ ≤

√𝑁�̅�(‖�̇�‖ + ‖𝑧‖), and from Assumptions 1, we have  

∑ 𝑧𝑖
𝑇𝑁

𝑖=1 𝜚𝑖 = [𝑧1
𝑇 … 𝑧𝑁

𝑇] [

𝜚1

⋮
𝜚𝑁

] ≤ √𝑁�̅�‖𝑧‖, where 𝜉 =

[𝜉1

𝑇
 ⋯ 𝜉𝑁

𝑇
]

𝑇

, 𝑧 = [𝑧1
𝑇 … 𝑧𝑁

𝑇]𝑇. Moreover, from definition 

of 𝒆�̂�𝒊  and 𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖), we get ‖𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖)
𝑇𝒆�̂�𝒊‖ ≤

∑ 𝑒�̂�𝑝𝑖‖𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖)‖
𝑛𝜃
𝑝=1 , and ‖𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖)‖ ≤

∑ ‖𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖)‖
𝑛𝜃
𝑝=1 . Furthermore, from (6), it is concluded 

that �̂�𝑝𝑖
≤ �̂�𝑝𝑖

(0), �̂�𝑛𝜃+1𝑖
≤ �̂�𝑛𝜃+1𝑖

(0). Thus, by some 

manipulation, we get 

�̇�2 ≤ ∑ ∑ (�̅�  + 𝑒�̂�𝑝𝑖
(0))‖𝑌𝑖

𝑝
(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖)‖𝑁

𝑖=1 ‖𝑧𝑖‖
𝑛𝜃
𝑝=1

+ ∑ �̇�𝑖
𝑇

𝜎𝑐𝑜𝑝𝑖
+ √𝑁(√𝑛 + �̅�)‖�̇�‖ + √𝑁(�̅� + �̅�)‖𝑧‖.𝑁

𝑖=1

   (14) 

From Lemma 2, we have 

�̇�3 = ∑ 𝛽𝑝
𝑛𝜃
𝑝=1 ∑ �̇̂�𝑝𝑖

𝑁
𝑖=1 + 𝛽𝑛𝜃+1 ∑ �̇̂�𝑛𝜃+1𝑖

𝑁
𝑖=1 =

− ∑ 𝛽𝑝
𝑛𝜃
𝑝=1 ∑ 𝑚𝑝𝑖

‖𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)‖‖𝑧𝑖‖𝑁
𝑖=1

−𝛽𝑛𝜃+1 ∑ 𝑚𝑛𝜃+1𝑖
(‖∑ 𝒶𝑖𝑗(�̇�𝑖 − �̇�𝑗)𝑗∈𝑁𝑖(𝑡) + 𝑑2�̇�𝑖‖ + ‖𝑧𝑖‖)𝑁

𝑖=1 ≤

− ∑ 𝛽𝑝
𝑛𝜃
𝑝=1 ∑ 𝑚𝑝𝑖

‖𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)‖‖𝑧𝑖‖𝑁
𝑖=1

−𝛽𝑛𝜃+1�̅�𝑛𝜃+1(√𝜆1((𝐿(𝑡𝑘−1) + 𝛤)2)‖�̇�‖ + ‖𝑧‖),

 

       (15) 

where �̅�𝑛𝜃+1 = 𝑚𝑖𝑛 {𝑚𝑛𝜃+1𝑖
|𝑖 = 1, … , 𝑁}. Thus, using 

Lemma 1 that −√𝜆1((𝐿(𝑡𝑘−1) + 𝛤)2) ≤ −√𝜆1((𝐿(0) + 𝛤)2), 

one has 

�̇�(𝑡) = 𝑒𝑉1+𝑉2+𝑉3(�̇�1 + �̇�2 + �̇�3) = 𝑉(𝑡)(�̇�1 + �̇�2 + �̇�3) ≤

−𝑉(𝑡)(�̇�𝑇((𝑑1𝐿(𝑡𝑘−1) + 𝑑2𝛤) ⊗ 𝐼𝑛)�̇�

+ ∑ ∑ (𝛽𝑝𝑚𝑝𝑖
− (�̅�   + 𝑒�̂�𝑝𝑖

(0)
))‖𝑌𝑖

𝑝
(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖)‖‖𝑧𝑖‖

𝑁
𝑖=1

𝑛𝜃
𝑝=1

+(𝛽𝑛𝜃+1�̅�𝑛𝜃+1√𝜆1((𝐿(0) + 𝛤)2) − √𝑁(√𝑛 + �̅�))‖�̇�‖)

+(𝛽𝑛𝜃+1�̅�𝑛𝜃+1 − √𝑁(�̅� + �̅�))‖𝑧‖) ≤ 0.

 

      (16) 

If the coefficients  𝛽𝑝, 𝛽𝑛𝜃+1  of energy function are chosen 

such that 

𝛽𝑝 ≥ 𝑚𝑎𝑥 {
(�̅� +𝑒

�̂�𝑝𝑖
(0)

)

𝑚𝑝𝑖

|𝑖 = 1, … , 𝑁}, 𝑝 = 1, … , 𝑛𝜃 ,

𝛽𝑛𝜃+1 ≥ 𝑚𝑎𝑥 {{
√𝑁(√𝑛+�̅�))

�̅�𝑛𝜃+1√𝜆1((𝐿(0)+𝛤)2)
,

√𝑁(�̅�+�̅�)

�̅�𝑛𝜃+1
}|𝑖 = 1, … , 𝑁},

() 

then (16) is guaranteed. From (10) and (16), it follows that 

𝑉(𝑡) ≤ 𝑉(𝑡𝑘−1) for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘). Without loss of generality, 

Assume 𝑡0 = 0. From (23), it follows that 𝑉(𝑡) ≤ 𝑉(0) for ∀𝑡 ∈

[0, 𝑡1). Also, since 𝑔(0) is connected and 𝑙𝑖𝑚‖𝜂𝑖𝑗‖→𝑟𝜙(‖𝜂𝑖𝑗‖) =

∞, then none of the links will tend to 𝑟 for 𝑡 ∈ [0, 𝑡1) and no 

edge is lost. Thus, the newly added links to the neighboring 

graph at  𝑡1 cause to switch in 𝑔(𝑡). Therefore, the finiteness of 

initial energy 𝑉(0), and the number of the newly added edges 

implies that 𝑉(𝑡1) will remain finite. Similarly, for each 

[𝑡𝑘−1,  𝑡𝑘), from (10) and (16), it is concluded that 𝑉(𝑡) ≤

𝑉(𝑡𝑘−1) < ∞. Therefore, since 𝑔(𝑡𝑘−1) is connected and 

𝑙𝑖𝑚‖𝜂𝑖𝑗‖→𝑟𝜙(‖𝜂𝑖𝑗‖) = ∞, then none of the existing edges will 

tend to 𝑟 for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘). Thus, the newly added links to the 

neighboring graph at  𝑡𝑘 cause to switch in 𝑔(𝑡). Therefore, the 

finiteness of the number of the newly added edges implies that, 

𝑉(𝑡𝑘) will be finite. Also, since 𝑔(0) is connected and no edges 

in 𝑒(𝑡) was lost, 𝑔(𝑡) will remain connected for all 𝑡 ≥ 0. 

Denote the number of the newly added links to the interaction 

network at  𝑡𝑘 by 𝜖𝑘. Clearly, 1 ≤ 𝜖𝑘 ≤ 𝛯, 1 ≤  𝑘 ≤ 𝛯 and 𝛯 ≜

0.5(𝑁 − 1)(𝑁 − 2). From (9), it follows that 𝑉(𝑡𝑘
+) =

𝑒𝜖𝑎𝑉(𝑟−�̌�)𝑉(𝑡𝑘
−), and then 

𝑉(𝑡𝑘
+) = 𝑒𝜖𝑘𝜙(𝑟−�̌�)𝑉(𝑡𝑘

−) ≤ 𝑒𝜖𝑎𝜙(𝑟−�̌�)𝑉(𝑡𝑘−1
+ )

 = 𝑒  (𝜖𝑘−1+𝜖𝑘)𝜙(𝑟−�̌�)𝑉(𝑡𝑘−1
− ) ≤ 𝑒  (𝜖𝑘−1+𝜖𝑘)𝜙(𝑟−�̌�)𝑉(𝑡𝑘−2

+ )

≤ ⋯ ≤ 𝑒  (𝜖1+𝜖2+⋯+𝜖𝑘)𝜙(𝑟−�̌�)𝑉(0).

 (17) 
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Thus, by using (17), one has 𝑉(𝑡𝑘
+) ≤

𝑒(𝜖1+𝜖2+⋯+𝜖𝑘)𝜙(𝑟−�̌�)𝑉(0) ≤ 𝑉𝑚𝑎𝑥, and then 𝑉(𝑡) ≤ 𝑉(𝑡𝑘
+) ≤

𝑉𝑚𝑎𝑥 for all 𝑡 ≥ 0, where 𝑉𝑚𝑎𝑥 ≜ 𝑉(0)𝑒𝛯𝜙(𝑟−�̌�) < ∞.  

Here we divide two sides of (16) to 𝑉(𝑡), hence we integrate 

them and get for left side 

∫
�̇�(𝑡)

𝑉(𝑡)
𝑑𝑡

∞

0
=

∫
�̇�(𝑡)

𝑉(𝑡)
𝑑𝑡

𝑡1
−

0
+ ∫

�̇�(𝑡)

𝑉(𝑡)
𝑑𝑡

𝑡2
− 

𝑡1
+ + ⋯ + ∫

�̇�(𝑡)

𝑉(𝑡)
𝑑𝑡 + ∫

�̇�(𝑡)

𝑉(𝑡)
𝑑𝑡

∞ 

𝑡𝑘
+

𝑡𝑘
− 

𝑡𝑘−1
+ =

ln (𝑉(𝑡1
−)) − ln (𝑉(0)) + ln (𝑉(𝑡2

−)) − ln (𝑉(𝑡1
+))

+ ⋯ + ln (𝑉(𝑡𝑘
−)) − ln (𝑉(𝑡𝑘−1

+ )) + ln (𝑉(∞)) − ln (𝑉(𝑡𝑘
+))

= − ln(𝑉(0)) − ln (
𝑉(𝑡1

+)

𝑉(𝑡1
−)

) − ⋯ − ln (
𝑉(𝑡𝑘

+)

𝑉(𝑡𝑘
−)

) + ln (𝑉(∞))

≥ − ln(𝑉(0)) − (𝜖1 + 𝜖2 + ⋯ + 𝜖𝑘)𝜙(𝑟 − 𝜀̌) + ln (𝑉(∞))

≥ − ln (𝑒(𝜖1+𝜖2+⋯+𝜖𝑘)𝜙(𝑟−�̌�)𝑉(0)) ≥ −𝑉(0)𝑒Ξ𝜙(𝑟−�̌�) = −𝑉max .

       (18) 
Also, for right side of (16), we have  

+ ∑ ∑ (𝛽𝑝𝑚𝑝𝑖
− (�̅�   + 𝑒

�̂�𝑝𝑖
(0)

)) ∫ ‖𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , 𝜉�̇�)‖‖𝑧𝑖‖
∞

0
𝑁
𝑖=1

𝑛𝜃
𝑝=1

+(𝛽𝑛𝜃+1�̅�𝑛𝜃+1√𝜆1((𝐿(0) + 𝛤)2) − √𝑁(√𝑛 + �̅�)) ∫ ‖�̇�‖
∞

0

+(𝛽𝑛𝜃+1�̅�𝑛𝜃+1 − √𝑁(�̅� + �̅�)) ∫ ‖𝑧‖
∞

0

+𝜆1(𝑑1𝐿(0) + 𝑑2𝛤) ∫ ‖�̇�‖
2∞

0
≤ − ∫

�̇�(𝑡)

𝑉(𝑡)
𝑑𝑡

∞

0
≤ 𝑉𝑚𝑎𝑥 .

      (19) 

From (19), it follows that ∫ ‖𝑌𝑖
𝑝

(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖)‖‖𝑧𝑖‖
∞

0
,  ∫‖𝑧‖𝑑𝑡, 

∫ ‖�̇�‖
∞

0
, and ∫ ‖�̇�‖

2∞

0
 are finite. Thus, from (6) and (10), it 

follows that �̂�1𝑖
∈ 𝐿∞, �̂�2𝑖

∈ 𝐿∞, �̂�3𝑖
∈ 𝐿∞. Furthermore, from 

𝑉(𝑡) ≤ 𝑉𝑚𝑎𝑥 and (10), it follows that 𝑉1 ∈ 𝐿∞, 𝜉𝑖 ∈ 𝐿∞, 𝑧𝑖 ∈ 𝐿∞, 

and then �̇�𝑖 ∈ 𝐿∞.   

Moreover, from 𝑉1 ∈ 𝐿∞ and (3), it follows that the maximum 

and minimum distances of agents from each others are 

respectively 𝑚𝑎𝑥 {𝜙−1(𝑉𝑚𝑎𝑥)} and 𝑚𝑖𝑛{𝜙−1(𝑉𝑚𝑎𝑥)}. This 

guarantees that no collision is happened among agents and 

𝛻𝜙�̃�𝑖
(‖𝜂𝑖𝑗‖) ∈ 𝐿∞. Thus, from (1), (5), and (7), it follows that 

𝜎𝑐𝑜𝑝𝑖
∈ 𝐿∞, and then 𝜎𝑖 ∈ 𝐿∞.  

Also, from Assumption 2 and  �̇�𝑖 ∈ 𝐿∞, it is concluded that 

�̇�𝑖 ∈ 𝐿∞. Thus, from (1) and Assumptions 1, 3, it follows that 

𝜂�̈� ∈ 𝐿∞, and then 𝜂�̈� ∈ 𝐿∞ or �̈� ∈ 𝐿∞ �̈� ∈ 𝐿∞. Therefore, �̇� is 

uniformly continues. Also, from (19), it obtains∫ ‖�̇�‖
2∞

0
≤

𝑉𝑚𝑎𝑥

𝜆1(𝑑1𝐿(0)+𝑑2𝛤)
. Thus, by using Barbalat lemma, it is concluded 

that 𝑙𝑖𝑚
𝑡→∞

�̇� = 0 i.e. �̇�1 = ⋯ = �̇�𝑁 = 0, then  �̇�1 = �̇�2 = ⋯ =

�̇�𝑁 = �̇�𝑟. 

Remark 4: Here we investigate a new adaptive control for 

MALS, which is both fully-distributed and continuous. Our 

proposed protocol in (4)–(7) guarantees the velocity 

convergence of all followers with the Lagrange dynamic and in 

the presence of the TVUED to a leader with bounded 

acceleration. Moreover, it guarantees a connectivity-maintaining 

and collision-free flocking motion. 

Remark 5:  The flocking problem with the external 

disturbance and uncertain parameters causes many challenges in 

the controller design process, especially with time-variant 

parameters and a dynamic leader. Most difficulties are due to the 

design of a controller being fully-distributed and continuous. In 

the fully-distributed controllers, there is no need to global 

information of neighbors, the virtual leader, and the initial 

network graph, and a continuous controller causes no chattering 

phenomenon in the performance. In the existing references [11-

18], there is no reference to consider both external disturbance 

and uncertainty problem, besides [17, 18]. However, in these 

works, the uncertainty is not supposed as time-varying in these 

works, and the designed controller is not fully distributed. Also, 

there is no reference, with the controller being both fully-

distributed and continuous. The only reference with the fully-

distributed controller is ref. [11], where an adaptive protocol for 

the leader-follower flocking of MALS with the unknown 

constant uncertainty, has been proposed. The controller, 

estimator, and adaptive laws in this work were defined based on 

the discontinuous Sign function and 1-norm of the system's 

states. Besides the chattering problem, the other drawback of this 

protocol is that using the 1-norm of the signals results in 

infinitely increasing the adaptive gains in the presence of 

disturbances or measurement errors. In Remark 3.9 of [11], 

authors claimed that in order to cope the unboundedly increasing 

problem of adaptive gains, an alternation is to introduce the 

small bounds for the norm of error signals in the adaptive laws 

that after interring the norm of error signals within these 

predefined bounds, increasing of adaptive gains are stopped. 

However, this solution does not causes an asymptotic flocking 

motion due to the time-varying uncertainty, and only a stable 

flocking motion involving the chattering phenomenon is 

achievable. Also, because of depending of the predefined bounds 

to global information of the initial network graph, it is not fully-

distributed. Therefore, unlike to our protocol, the protocol [11] 

is not applied to the MALS with TVUED problem. 

     

IV. Simulation Study 

In In this section, we perform a simulation to illustrate the 

effectiveness of the results. We assume that the agents move in a 

2-dimensional space (X, Y), and the first agent is informed. The 

multi-agent group includes five standard two-DOF robot 

manipulators. Assume that each manipulator carries a time-

varying mass. The dynamic of each agent is modeled as 

[
𝑚𝑖 0
0 𝑚𝑖

] �̈�𝑖 + [
0 −𝛽𝑖

𝛽𝑖 0
] �̇�𝑖 = 𝜎𝑖 + 𝜚𝑖 ,   

where 𝜂𝑖 ∈ 𝑅2 is the vector of joint displacements, 𝜎𝑖 ∈ 𝑅2 is 

the control torques, 𝜚𝑖  is the acted external disturbance on ith 

manipulator, and 𝑚𝑖, 𝛽𝑖  
are its time-varying mass and damping 

constants, respectively. Suppose 𝑚𝑖 = (1 + 0.1 𝑐𝑜𝑠(4𝑖𝑡))𝑚0, 

𝛽𝑖 = (1 + 0.1 𝑐𝑜𝑠(4𝑖𝑡))𝛽0, where 𝑚0 and 𝛽0 are nominal value. 

Also, the dynamic of leader is �̈�𝑟 = [
𝑠𝑖𝑛 (3𝑡)

𝑐𝑜𝑠 (3𝑡)
], and external 

disturbance of each agent is that 𝜚𝑖 = [
𝑠𝑖𝑛 (2𝑖𝑡)

𝑐𝑜𝑠 (2𝑖𝑡)
]. Here 𝜗𝑖 =

[
𝑚𝑖

𝛽𝑖
], 𝑌𝑖(𝜂𝑖 , �̇�𝑖 , 𝜉𝑖 , �̇�𝑖) = [�̇�𝑖 𝜉𝑖], where �̇�𝑖  defined in (4).  
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In the first simulation for the protocol (4)-(7), we consider 𝑟 =

10, 𝜀0 = 0.1, 𝜀 = 0.5, 𝑚1𝑖
= 𝑚2𝑖

= 𝑚3𝑖
= 10, 𝑖 = 1, … , 𝑁,   

𝜇 = 6000, 𝑑1 = 400, 𝑑2 = 3000.  

 
Fig. 1: The position and trajectory of agents under protocol (4)-

(7). 

 
Fig. 2: Agents’ velocity over the X-Y axes under protocol (4)-(7). 

Fig. 3: The trajectory of �̂�1𝑖
�̂�2𝑖

, �̂�3𝑖
, 𝑖 = 1, … ,5 in protocol (4)-(7). 

 

Figs. 1-3 show the results for our protocol. In the fig. 1 the 

squares represent the uninformed agents, and the star depicts the 

informed agent. Solid lines represent neighboring links, and the 

dash-dotted lines depict the agents’ trajectory.  

Fig. 2 indicates the velocity of all agents over the X-axis and 

the Y-axis. Fig. 3 depicts the adaptive gain of �̂�1𝑖
�̂�2𝑖

, �̂�3𝑖
, 𝑖 =

1, … ,5. As shown in the figs. 1-3 under our protocol, the 

network’s initial connectivity is preserved during the motion, 

and no collision happens among the agents. Also, the whole 

group's velocity asymptotically converges to that of the virtual 

leader, and all adaptive gains remain bounded.  

 

V. Conclusion  

This paper proposed a controller for Lagrange systems' leader-

follower flocking with the time-varying uncertainty and external 

disturbances problems. It was assumed, the virtual leader moves 

with a time-varying velocity and bounded acceleration. By 

designing a new adaptive law and an estimator, we proposed a 

continuous fully-distributed adaptive protocol, which achieve all 

flocking motion goals. 

It is remarkable that our results also can be extended to the 

connectivity-preserving consensus problem. 

For future work, we aim to design a fully-distributed adaptive 

protocol for the flocking of Lagrange systems under input 

saturation or actuator fault problem. 
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