Detection of Accelerated Osteointegration in Surface Modified Dental Implants with Sensor Nodes Located in Wireless Network of Body Areas
Subject Areas :
Multimedia Processing, Communications Systems, Intelligent Systems
moluk Eyvazi
1
*
1 - Assistant Professor, Biomedical Engineering, Technical and Engineering Faculty, Apadana Institute of Higher Education, Shiraz, Iran
Received: 2022-07-10
Accepted : 2022-11-17
Published : 2022-09-23
Keywords:
newsurfacemodifications .sensory nodes.wireless network body area,
Osseointegration,
periimplantitis,
Abstract :
Introduction: Intraosseoues Dental implants are widely used in the field of oral restoration. Endosseous dental implants have been well accepted for replacing missing teeth in today’s dental practice. The success of dental implant therapy is essentially based on the process of osseointegration. These success rates depends on the mechanical,structural and surfaces properties in contact with the jaw bone and timely identification of osseointegration process. In zirconia implants,the combined surface modification of femtosecond laser and bioceramic coatings is important to accelerateosteointegration.The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design.The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics.The type of surface modification has a great effect on uniting the implant with the jawbone. But still many problems such as osseointegration defect and infection adjacent to the implant lead to their failure in clinical applications This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone.Method: It is important to use effective surface modification methods and apply appropriate coatings in order to create successful osseointegration and preventing bacteria from adhesion. Results: Byreducing periimplantitis and accelerating osseointegration, it will lead to improved repair and clinical success. The review gives an insight of the various surface modifications and designs that can be successfully applied on dental implants so that a greater level of osseointegration can be achieved.Discussion: Major advancements have been made in order to develop implants with innovative surface topography and design. These modifications have greatly influenced the rate and degree of osseointegration. Therefore, the purpose of this review article was study new methods of surface modification for detecting of accelerating osteointegration by sensory nodes that located in wireless body area network, reducing the periimplantitis and aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation,which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation and Follow-up of patients at any time without the use of X-rays with sensory nodes that located in body area wireless network. .
References:
A.M. Alsolami, N.T. Hashem, &. F.F. Athagafi, Y.M. Alghamadi, Y.R Almaddah, “Basic concepts and techniques of dental implants: a review" International journal of medicine in developing countries,vol. 5,no. 2, 2021.
R.B. Osman, M.v. Swain, “A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials,vol. 8, 2015.
L.F. Cooper, “A role for surface topography in creating and maintaining bone at titanium endosseous implants” J Prosthet Dent.vol. 84, 2000.
A. Siddiqi, A. G. Payne, R. K. De Silva, W. J. Duncan, Titanium allergy: could it affect dental implant integration?. Clin Oral Implants Res,vol. 22 , 2011.
L. Gineste, M. Gineste, X. Ranz, A. Ellefterion, A. Guilhem, N. Rouquet, P. Frayssinet, “Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J Biomed Mater Res, vol. 48, 1999.
H. Dong, N. Zhou, H. Liu, H. Huang, G. Yang, L. Chen, M. Ding, Y. Mou, “ Satisfaction analysis of patients with single implant treatments based on a questionnaire survey” Patient Prefer. Adherence, vol. 13, 2019.
T. Nguyen-Hieu, A. Borghetti, G. Aboudharam, “ Peri-implantitis: From diagnosis to therapeutics”
J. Investig. Clin. Dent, Vol. 3, 2012.
A. Warreth, M. Cremonese, “Dental implants:An overview. Implant Dentistry, vol. 44, 2017.
K. A. Thomas “ Hydroxyapatite coatings” Orthopaedics , vol.17, 1994.
N. Sykaras, A. M. Iacopino, Y. A. Marker, V. A. Triplett, R.G. Woody “ Implant materials,
designs, and surface topographies: their effect on osseointegration. A literature review” Int J Oral Maxillofac Implants, vol. 15, 2000.
K. W. Higuchi, T. Folmer, C. Kultje, “ Implant survival rates in partially edentulous patients: a 3-year prospective multicenter study” J Oral Maxillofac Surg, vol. 53, 1995.
A. Warreth, H. Fesharaki, R. McConville, D. McReynolds, “ An introduction to single implant abutments” Dent Update , vol. 40, 2013.
A. A. Jones, D. L. Cochran, “ Consequences of implant design”Dent Clin North Am, vol. 50, 2006.
S. Cha, Y. S. Park, “ Plasma in dentistry” Clin. Plasma Med, vol. 2, 2014.
D. P. Tarnow, S. C. Cho, S. S. Wallace, “ The effect of inter-implant distance on the heigh of inter-implant bone crest” J Periodontol, vol. 71, 2000.
P. L. Brånemark, “ Osseointegration and its experimental studies” J Prosthet Dent, vol. 50, 1983.
L. Sennerby, L. E. Ericson, P. Thomsen, U. Lekholm, P. Astrand, “ Structure of the
bone-titanium interface in retrieved clinical oral implants” Clin Oral Implants Res, vol. 2, 1991.
C. M. L. Clokie, H. Warshawsky, “Morphological and radioautographic studies of bone formation in relation totitanium implants using the rat tibia as a model” Int J Oral and Maxillofac Implants, vol. 10, 1995.
A. Warreth, H. Fesharaki, R. McConville, D. McReynolds, “ An introduction to single
implant abutments” Dent Update, vol. 40, 2013.
O. Geckili, H. Bilhan, E. Geckili, A. Cilingir, E. Mumcu, C. Bural, “Evaluation of possible
prognostic factors for the success, survival, and failure of dental implants” Implant Dent , vol. 23, 2014.
U. Lekholm, G.A. Zarb, “Patient selection and preparation. In: Tissue-Integrated Prostheses” Osseointegration in Clinical, vol. 3, 1985.
F. Javed, G. E. Romanos, “The role of primary stability for successful immediate loading
of dental implants A literature review” J Dent, vol. 38, 2010.
C. E. Misch, “ContemporaryImplantDentistry 2nd edn. St Louis: Elsevier, 2008.
R. B. Osman, A. H. Elkhadem, M. V. Swain, “ Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis” Int J Oral Maxillofac Implants, vol. 28, 2013.
Z. Özkurt, E. Kazazoğlu, “ Zirconia dental implants: a literature review” J Oral Implantol , vol. 37, 2011.
R. Fuentealba, J. Jofré, “Esthetic failure in implant dentistry”Dent Clin North Am, vol. 59, 2015.
M. Aivazi, M. H. Fathi, F. Nejatidanesh, V. Mortazavi, B. Banihashemi, J. P. Mantiniella, “The evaluation of prepared microgroove pattern by femtosecond laser on Alumina-zirconia nanocomposite for endosseous dental implant application” Laser med sci, vol. 31, 2016.
S. Gracis, K. Michalakis, P. Vigolo, P. Steyern, M. Zwahlen, L. Sailer, “ Internal vs. external connections for abutments/reconstructions: a systematic review” Clin Oral Implants Res, vol. 23, no. 6, 2012.
K. Akça, M. C. Cehreli, H. Iplikçioğlu, “ Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter morse- taper implant. A nonlinear finite element stress analysis” Clin Oral Implants Res, vol. 14, 2003.
H. Dong, H. Liu, N. Zhou, Q. Li, G. Yang, L. Chen, Y. Mou, “Surface Modified Techniques and Emerging Functional Coating of Dental Implants” Coatings, vol. 10, 2020.
R. M. Segundo, H. M. Oshima, I. N. Silva, L. H. Burnett , E. G. Mota, L. L. Silva, “Stress distribution of an internal connection implant prostheses set: a 3D finite element analysis” Stomatologija , vol. 11, 2009.
W. S. Jing, M. H. Zhang, L. Jin, J. Zhao, O. Gao, M. ,Ren, Q. Y. Fan, “ Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy”Int. J. Surg, vol. 24, 2015.
A. Choi, B. Ben-Nissan, J. Matinlinna, R. C. Conway, “ Current perspectives: Calcium phosphate nanocoatingsand nanocomposite coatings in dentistry” J. Dent. Res, vol. 92, 2013.
C. H. Fang, Y. W. Lin, F. H. Lin, J. S. Sun, Y. H. Chao, H. Y. Lin, Z. C. Chang, “ Biomimetic Synthesis of Nanocrystalline Hydroxyapatite Composites: Therapeutic Potential and Effects on Bone Regeneration”Int. J. Mol. Sci, vol. 20, 2019.
P. P. Binon, M. J. McHugh, “ The effect of eliminating implant/abutment rotational misfit on screw-stability”Int J Prosthodont, vol. 9, 1996.
A. Cantwell, J. A. Hobkirk, “ Pre-load loss n gold prosthesis-retaining screws as a function of time” Int J Oral Maxillofac Implants, vol. 19, 2004.
K. B. Tan, J. T. Nicholls, “Implant-abutment screw-joint pre-load of 7 hex-top abutment systems” Int J Oral Maxillofac Implants, vol. 16, 2001.
S. R. Shin, J. HaeLin, H. L. Jang, P. Khoshakhlagh, M. Akbari, A. Nasajpour, Y. S. Zhang, A. Tamayol, A. Khademhosseini, “ Graphene-based materials for tissue engineering” Adv. Drug Deliv. Rev, vol. 105, 2016.
Q. Li, Z. Wang, “ Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced OsteogenesisInduced by Nano-Graphene Oxide Modification on Titanium Implant Surface” Int. J. Nanomed, vol. 15, 2020.
K. L. Goheen, S. G. Vermilyea, J. Vossoughi, J. R. Agar, “Torque generated by handheld
screwdrivers and mechanical torqueing devices for osseointegrated implants” Int J Oral Maxillofac Implants , vol. 9, 1994.
F. D. Almeida, A. C. Carvalho, M. Fontes, A. Pedrosa, R. Costa, J. W. Noleto, C. F. Mourão, “
Radiographic evaluation of marginal bone level around internal-hex implants with switched platform: a clinical case reportseries” Int J Oral Maxillofac Implants, vol. 26, 2011.
Y. Jamil, R. Khan and Mehme. Wireless Body Area Network (WBAN) for Medical Applications
New Developments in Biomedical Engineering, Domenico Campolo (Ed.), ISBN: 978-953-7619-57-2, InTech,2010.
A. Warreth, M. Ramadan, M. R. Bajilan, N. Ibieyou, J. El-Swiah, R. F. Elemam, “ Fundamentals of occlusion and restorative dentistry. Part I: basic principles” J Ir Dent Assoc, vol. 61, 2015.
A. H. Chou, R. Z. LeGeros, Z. Chen, Y. Li, “Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes” Implant Dent, vol. 16, 2020.
Q. Luo, H. Cao, L. Wang, X. Ma, X. Liu, “ZnO@ZnS nanorod-array coated titanium: Good to fibroblasts but bad to bacteria” J. Colloid Interface Sci, vol. 57, 2020.
S. Kranz, A. Guellmar, A. Voelpel, T. Lesser, S. Tonndorf-Martini, J. Schmidt, C. Faucon, U. Finger, W. Pfister, “Bactericidal and Biocompatible Properties of Plasma Chemical Oxidized Titanium(TiOB(®)) with Antimicrobial Surface Functionalization” Materials, vol. 12, 2019.
J. Rosenbaum, D. L. Versace, S. Abbad-Andallousi, R. Pires, C. Azevedo, P. Cénédese, P. A. Dubot, “Antibacterial properties of nanostructured Cu-TiO(2) surfaces for dental implants” Biomater. Sci., vol. 5, 2017.
X. Wang, H. Dong, J. Liu, G. Qin, D. Chen, E., Zhang, “ In vivo antibacterial property of Ti-Cu sintered alloy implant” Mater. Sci. Eng. C Mater. Biol. Appl, vol. 100, 2019.
_||_