Selection of Layout planning using fuzzy approach and PROMETHEE II method
Subject Areas : Industrial ManagementJaber Kalaki Juybari 1 , Jafar Kalaki Juybari 2 , Reza Hasanzadeh 3
1 - Department of Industrial Engineering Rouzbahan Institute of Higher Education, Sari, Iran
2 - Department of Public Administration, Islamic Azad University, Ghaeemshahr Branch, Ghaeemshahr, Iran
3 - Department of Industrial Engineering Rouzbahan Institute of Higher Education, Sari, Iran
Keywords: Aldep, PROMETHEE II, Layout, Plannet, Micro Craft,
Abstract :
Layout Sections problem, processed how to departmental layout in the work area, considering the required area and the relationship between sectors. The problem of Layout sections as Considered being a key principle to improve factory productivity. We know, inappropriate designs layout of sections, Along with numerous dilemmas and Operating costs of material Displacement systems. There are different ways to Factory Layout Sections, each of the methods has its own features, One cannot say which of them has an absolute superiority to another, Therefore, should by adopting an appropriate approach Obtained the best possible layout from different designs. In this paper, after presenting various layouts with spiral technique and systematic layout planning using software’s Aldep, Micro Craft, Plannet And reviewing Effective Criteria on plan of layouts with a fuzzy approach for qualitative data, And determining the weight of the criteria, the final ranking was done using the PROMETHEE II method and the lab Decision software in a case study. After reviewing the layout plans, Design created with Plannet software, which was in second place in terms of transportation costs, Overall, Taking into account the qualitative criteria of the decision matrix, Ranked first in the final rankings.
1- Albadavi, A., Chaharsooghi, S.K. & Esfahanipour, A. (2007). Decision making in stock trading: An application of PROMETHEE. European Journal of Operational Research, 177, 673–683.
2- Arunyanart, S. & Pruekthaisong, S. (2018). Selection of multi-criteria plant layout design by combining AHP and DEA methodologies, The 4th International Conference on Engineering, Applied Sciences and Technology, 192, 5.
3- Ayag˘, Z. & Özdemir, R.G. (2007). An intelligent approach to ERP software selection through fuzzy ANP. International Journal of Production Research, 45(10), 2169–2194.
4- Bogdanovic, D., Nikolic, D. & Ilic, I. (2012). Mining method selection by integrated AHP and PROMETHEE method. Anais da Academia Brasileira de Ciências, 84(1), 219-233.
5- Cambron, K.E. & Evans, G.W. (1991). Layout design using the analytic hierarchy process. Computers and Industrial Engineering, 202, 211-229.
6- Dubel, A. & Stryhunivska, O. (2019). Application of selection techniques of optimal planning and evaluation of a system layout in virtual environment, Central and Eastern European Journalof Management and Economics, 7, 2, 47-62.
7- Entezari, A. (2004). Planning industrial units) Plant Layout (, Jahan jame jam publishing, Tehran, First edition, (In Persian).
8- Ertay, T., Ruan, Da, & Tuzkaya, U. R. (2006). Integrated data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems, Information science, 176, 3, 237-262.
9- Gonzalez-Cruz, M. C. & Martinez, E.G. (2011). An entropy-based algorithm to solve the facility layout design problem, Robotics and Computer-Integrated Manufacturing, 27, 1, 88-100.
10- Güngör, Z., Serhadlıog ˘lu, G. & Kesen, S. E. (2009). A fuzzy AHP approach to personnel selection problem. Applied Soft Computing, 9, 641–646.
11- Jung, H. (2011). A fuzzy AHP–GP approach for integrated production-planning considering manufacturing partners. Expert Systems with Applications.38. 5833-5840.
12- Karray, F., Zaneldin, E., Hegazy, T., Shabeeb, A.H.M. & Elbeltagi, E. (2000). Tools of softcomputing as applied to the problem of facilities layout planning. IEEE Transactions on Fuzzy Systems, 8(4), 367-379.
13- Macharis, C., Springael, J., Brucker, K.D. & Verbeke, A. (2007). PROMETHEE and AHP: The design of operational synergies in multicriteria analysis, Strengthening PROMETHEE with ideas of AHP. European Journal of Operational Research, 153, 307–317.
14- Miri, A. & Razavi, H. (2018). Optimization of Discrete Facility Layout with a Candidate Grouping Approach, Production and Operations Management, Vol 9, 55-78. (In Persian).
15- Momeni, M. (2006). New issues in operations research, Publishing Faculty of Manageme- nt University of Tehran, First edition. (In Persian).
16- Pan, N.F. (2008). Fuzzy AHP approach for selecting the suitable bridge construction method. Automation in Construction, 17, 958–965.
17- Rezaeenour, J., Torabi, M. & Babaie, N. (2016). Development of Compound Model for Warehouse Location Using Fuzzy Weighted Average based on the Left and Right Scores and Fuzzy Case Series, Journal of Industrial Management, Sanandaj Branch, Volume 11, Issue 35, Page 45-56, (In Persian).
18- Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill.
19- Safari, H., Fagheyi, M.S., Ahangari, S.S. & Fathi, M.R. (2012). Applying PROMETHEE Method based on Entropy Weight for Supplier Selection. Business management and strategy, 3(1), 97-106.
20- Soleymani, M. & Khosroabadi, A. (2014). Optimal layout of manufacturing sections In an industrial unit using manual deployment, Conference on value engineering and cost Management, Tehran, Pars Designers Research Institute, (In Persian).
21- Tavakoli, A., Poya, A. & Tabari, J. (2013). Compilation design Fuzzy Multi-criteria decision making to select the layout of the facility, Industrial Management Perspective, No. 10, pp. 57-84, (In Persian).
22- Toloei Ashlaghi, A. & Mojrian, M. (2011). Developing a facility layout optimization method using mathematical modeling (Case study: Pooya khodro shargh), journal of management research, volume 21, number 87; page81 to 94, (In Persian).
23- Torfi, F., zanjirani Farahani, R. & Rezapour, SH. (2010). Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives. Applied Soft Computing, 102, 520-528.
24- Vahidnia, M., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90, 3048–3056.
25- Yang, T. & Hung, C. (2007). Multiple-attribute decision-making methods for plant layout design problem, Robotic and Computer-Integrated Manufacturing, 23, 1, 126-137.
26- Yang, T. & Kuo, Ch. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. Europen Journal of Operational research, 147.1, 128-13.
_||_1- Albadavi, A., Chaharsooghi, S.K. & Esfahanipour, A. (2007). Decision making in stock trading: An application of PROMETHEE. European Journal of Operational Research, 177, 673–683.
2- Arunyanart, S. & Pruekthaisong, S. (2018). Selection of multi-criteria plant layout design by combining AHP and DEA methodologies, The 4th International Conference on Engineering, Applied Sciences and Technology, 192, 5.
3- Ayag˘, Z. & Özdemir, R.G. (2007). An intelligent approach to ERP software selection through fuzzy ANP. International Journal of Production Research, 45(10), 2169–2194.
4- Bogdanovic, D., Nikolic, D. & Ilic, I. (2012). Mining method selection by integrated AHP and PROMETHEE method. Anais da Academia Brasileira de Ciências, 84(1), 219-233.
5- Cambron, K.E. & Evans, G.W. (1991). Layout design using the analytic hierarchy process. Computers and Industrial Engineering, 202, 211-229.
6- Dubel, A. & Stryhunivska, O. (2019). Application of selection techniques of optimal planning and evaluation of a system layout in virtual environment, Central and Eastern European Journalof Management and Economics, 7, 2, 47-62.
7- Entezari, A. (2004). Planning industrial units) Plant Layout (, Jahan jame jam publishing, Tehran, First edition, (In Persian).
8- Ertay, T., Ruan, Da, & Tuzkaya, U. R. (2006). Integrated data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems, Information science, 176, 3, 237-262.
9- Gonzalez-Cruz, M. C. & Martinez, E.G. (2011). An entropy-based algorithm to solve the facility layout design problem, Robotics and Computer-Integrated Manufacturing, 27, 1, 88-100.
10- Güngör, Z., Serhadlıog ˘lu, G. & Kesen, S. E. (2009). A fuzzy AHP approach to personnel selection problem. Applied Soft Computing, 9, 641–646.
11- Jung, H. (2011). A fuzzy AHP–GP approach for integrated production-planning considering manufacturing partners. Expert Systems with Applications.38. 5833-5840.
12- Karray, F., Zaneldin, E., Hegazy, T., Shabeeb, A.H.M. & Elbeltagi, E. (2000). Tools of softcomputing as applied to the problem of facilities layout planning. IEEE Transactions on Fuzzy Systems, 8(4), 367-379.
13- Macharis, C., Springael, J., Brucker, K.D. & Verbeke, A. (2007). PROMETHEE and AHP: The design of operational synergies in multicriteria analysis, Strengthening PROMETHEE with ideas of AHP. European Journal of Operational Research, 153, 307–317.
14- Miri, A. & Razavi, H. (2018). Optimization of Discrete Facility Layout with a Candidate Grouping Approach, Production and Operations Management, Vol 9, 55-78. (In Persian).
15- Momeni, M. (2006). New issues in operations research, Publishing Faculty of Manageme- nt University of Tehran, First edition. (In Persian).
16- Pan, N.F. (2008). Fuzzy AHP approach for selecting the suitable bridge construction method. Automation in Construction, 17, 958–965.
17- Rezaeenour, J., Torabi, M. & Babaie, N. (2016). Development of Compound Model for Warehouse Location Using Fuzzy Weighted Average based on the Left and Right Scores and Fuzzy Case Series, Journal of Industrial Management, Sanandaj Branch, Volume 11, Issue 35, Page 45-56, (In Persian).
18- Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill.
19- Safari, H., Fagheyi, M.S., Ahangari, S.S. & Fathi, M.R. (2012). Applying PROMETHEE Method based on Entropy Weight for Supplier Selection. Business management and strategy, 3(1), 97-106.
20- Soleymani, M. & Khosroabadi, A. (2014). Optimal layout of manufacturing sections In an industrial unit using manual deployment, Conference on value engineering and cost Management, Tehran, Pars Designers Research Institute, (In Persian).
21- Tavakoli, A., Poya, A. & Tabari, J. (2013). Compilation design Fuzzy Multi-criteria decision making to select the layout of the facility, Industrial Management Perspective, No. 10, pp. 57-84, (In Persian).
22- Toloei Ashlaghi, A. & Mojrian, M. (2011). Developing a facility layout optimization method using mathematical modeling (Case study: Pooya khodro shargh), journal of management research, volume 21, number 87; page81 to 94, (In Persian).
23- Torfi, F., zanjirani Farahani, R. & Rezapour, SH. (2010). Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives. Applied Soft Computing, 102, 520-528.
24- Vahidnia, M., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90, 3048–3056.
25- Yang, T. & Hung, C. (2007). Multiple-attribute decision-making methods for plant layout design problem, Robotic and Computer-Integrated Manufacturing, 23, 1, 126-137.
26- Yang, T. & Kuo, Ch. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. Europen Journal of Operational research, 147.1, 128-13.