Modeling new ranking behavior of users in online social networks to achieve efficient recommending algorithms
Subject Areas : International Journal of Data Envelopment AnalysisMehdi Safarpour 1 , S.Hadi Yaghoubyan 2 * , Karamolah BagheriFard 3 , razieh malekhoseini 4 , Samad Nejatian 5
1 - Islamic Azad University Shiraz Branch
2 - Department of Computer Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran
3 - Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
4 - Assistant professor in architecture, Department of architecture and urban design, Shiraz Branch , Islamic Azad University, Shiraz , Iran
5 - Department of Electrical Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran
Keywords: social networks, recommendation systems, collaborative filtering, users' behavior prediction, social relationship,
Abstract :
Today, the role of recommender algorithms on online platforms of social networks is considered with the penetration rate increase on the platforms. Moreover, investigating these algorithms' functionality accuracy is important in the appropriate recommendations. These algorithms have been introduced for a long time, and they try to propose appropriate recommendations by the users' behavior modeling. But, nowadays, with an increasingnumber of people relatives on social networks, the networks' users' behavior is psychological. Moreover, the people's action is related to different events such as publishing a post in addition to the post's contention, the user interest in the post publisher, and the people relationship. This paper shows that user behavior in a social network is predictable and indicates the possibility of incorrect recommendations in participatory filtering algorithms.
Agarwal, D., & Chen, B.-C. (2009). Regression-based latent factor models. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’09.
Agarwal, D., & Chen, B.-C. (2010). fLDA: Matrix factorization through latent dirichlet allocation. Proceedings of the Third ACM International Conference on Web Search and Data Mining - WSDM ’10.
Aggarwal, C. (2016). Recommender Systems. Springer International Publishing.
Aivazoglou, M., Roussos, A. O., Margaris, D., Vassilakis, C., Ioannidis, S., Polakis, J., & Spiliotopoulos, D. (2020). A fine-grained social network recommender system. Social Network Analysis and Mining, 10(1). https://doi.org/10.1007/s13278-019-0621-7
Arnaboldi, V., Campana, M. G., Delmastro, F., & Pagani, E. (2016). PLIERS: A popularity-based recommender system for content dissemination in online social networks. Proceedings of the 31st Annual ACM Symposium on Applied Computing.
Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011). Everyone’s an influencer: Quantifying influence on twitter. Proceedings of the Fourth ACM International Conference on Web Search and Data Mining - WSDM ’11.
Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. Proceedings of the 21st International Conference on World Wide Web - WWW ’12.
Bianca, B. L. (2018). The user behavior analysis based on text messages using parafac and block term decomposition. International Journal of Advanced Computer Science and Applications : IJACSA, 9(10). https://doi.org/10.14569/ijacsa.2018.091007
Bokde, D., Girase, S., & Mukhopadhyay, D. (2015). Matrix factorization model in collaborative filtering algorithms: A survey. Procedia Computer Science, 49, 136–146. https://doi.org/10.1016/j.procs.2015.04.237
Buscher, G., Cutrell, E., & Morris, M. R. (2009). What do you see when you’re surfing?: Using eye tracking to predict salient regions of web pages. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Campana, M. G., & Delmastro, F. (2017). Recommender systems for online and mobile social networks: A survey. Online Social Networks and Media, 3–4, 75–97. https://doi.org/10.1016/j.osnem.2017.10.005
Chua, F. C. T., Lauw, H. W., & Lim, E.-P. (2013). Generative models for item adoptions using social correlation. IEEE Transactions on Knowledge and Data Engineering, 25(9), 2036–2048. https://doi.org/10.1109/tkde.2012.137
Clore, G. L., & Byrne, D. (1974). A reinforcement-affect model of attraction. In Foundations of Interpersonal Attraction (pp. 143–170). Elsevier.
Dunbar, R. I. M. (2016). Do online social media cut through the constraints that limit the size of offline social networks? Royal Society Open Science, 3(1), 150292. https://doi.org/10.1098/rsos.150292
Dunbar, R. I. M., & Shultz, S. (2007). Evolution in the social brain. Science (New York, N.Y.), 317(5843), 1344–1347. https://doi.org/10.1126/science.1145463
Fan, W., Ma, Y., Yin, D., Wang, J., Tang, J., & Li, Q. (2019). Deep social collaborative filtering. Proceedings of the 13th ACM Conference on Recommender Systems.
Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling users’ activity on twitter networks: validation of Dunbar’s number. PloS One, 6(8), e22656. https://doi.org/10.1371/journal.pone.0022656
Harris, J., Hirst, J. L., & Mossinghoff, M. (2008). Combinatorics and Graph Theory. Springer New York.
Hodas, N. O., & Lerman, K. (2012a). How visibility and divided attention constrain social contagion. 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.
Hodas, N. O., & Lerman, K. (2012b). How visibility and divided attention constrain social contagion. In arXiv [physics.soc-ph]. http://arxiv.org/abs/1205.2736
Hyon, R., Kleinbaum, A. M., & Parkinson, C. (2020). Social network proximity predicts similar trajectories of psychological states: Evidence from multi-voxel spatiotemporal dynamics. NeuroImage, 216(116492), 116492. https://doi.org/10.1016/j.neuroimage.2019.116492
Kang, J.-H., & Lerman, K. (2013). LA-CTR: A limited attention collaborative topic regression for social media. In arXiv [cs.IR]. http://arxiv.org/abs/1311.1247
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30–37. https://doi.org/10.1109/mc.2009.263
Li, Z., Xiong, F., Wang, X., Chen, H., & Xiong, X. (2019). Topological influence-aware recommendation on social networks. Complexity, 2019, 1–12. https://doi.org/10.1155/2019/6325654
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415–444. https://doi.org/10.1146/annurev.soc.27.1.415
Purushotham, S., Liu, Y., & Kuo, C.-C. J. (2012). Collaborative topic regression with social matrix factorization for recommendation systems. In arXiv [cs.IR]. http://arxiv.org/abs/1206.4684
Rodríguez, N. D., Cuéllar, M. P., Lilius, J., & Calvo-Flores, M. D. (2014). A survey on ontologies for human behavior recognition. ACM Computing Surveys, 46(4), 1–33. https://doi.org/10.1145/2523819
Romero, D. M., Galuba, W., Asur, S., & Huberman, B. A. (2011). Influence and passivity in social media. Proceedings of the 20th International Conference Companion on World Wide Web - WWW ’11.
Romero, D. M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. Proceedings of the 20th International Conference on World Wide Web - WWW ’11.
Sarkar, P., & Moore, A. W. (2011). Random walks in social networks and their applications: A survey. In Social Network Data Analytics (pp. 43–77). Springer US.
Sun, Z., Han, L., Huang, W., Wang, X., Zeng, X., Wang, M., & Yan, H. (2015). Recommender systems based on social networks. The Journal of Systems and Software, 99, 109–119. https://doi.org/10.1016/j.jss.2014.09.019
Weng, L., Menczer, F., & Ahn, Y.-Y. (2013). Virality prediction and community structure in social networks. Scientific Reports, 3(1), 2522. https://doi.org/10.1038/srep02522
Wikipedia contributors. (2020, November 15). Proximity principle. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Proximity_principle&oldid=988780582
Yang, M., Zhang, S., Zhang, H., & Xia, J. (2019). A new user behavior evaluation method in online social network. Journal of Information Security and Applications, 47, 217–222. https://doi.org/10.1016/j.jisa.2019.04.008
Yin, H., Cui, B., Chen, L., Hu, Z., & Huang, Z. (2014). A temporal context-aware model for user behavior modeling in social media systems. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data.
Yu, K., Lafferty, J., Zhu, S., & Gong, Y. (2009). Large-scale collaborative prediction using a nonparametric random effects model. Proceedings of the 26th Annual International Conference on Machine Learning - ICML ’09.
Zhao, J., Wang, P., Lui, J. C. S., Towsley, D., & Guan, X. (2019). Sampling online social networks by random walk with indirect jumps. Data Mining and Knowledge Discovery, 33(1), 24–57. https://doi.org/10.1007/s10618-018-0587-5