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  The development of computational models is a useful tool for studying the structure and characteristics of 

brain neurons. By using different modeling methods, the mechanism of neurodegenerative diseases such as 

Alzheimer's (AD), Epilepsy, and Parkinson's disease (PD) can be understood. Brain disease modeling studies 

often focus on the Cortex, Thalamus (Th), and Basal Ganglia (BG). The primary motor cortex (M1) has 

interconnected layers that play an important role in performing movements and treating neurological diseases 

of the brain. In this paper, we have considered a model of the M1-BG-Th for the neural structure of healthy 

and Parkinsonian brain neurons. We have investigated excessive oscillations of the beta band and changes in 

the firing rate of the neurons, which are dynamic characteristics of PD. We have examined characteristics of 

the firing rate and power spectrum of the neurons of the M1-BG-Th network model, which shows the 

oscillations of the beta band of neurons of the M1-BG-Th network model, and we have studied healthy and 

Parkinsonian states. Our aim in presenting the proposed M1-BG-Th model is to investigate optogenetic 

stimulation for the treatment of neurological diseases of the brain, which is a minimally invasive method and 

targets specifically selected brain neurons by using opsins. 

 

 

 

 
 
  

 

 

I. INTRODUCTION 

The neurodegenerative disorders of the brain 

tissue are identified by progressive loss of the 

set of vulnerable selected neurons. 

Neurodegenerative diseases can be classified 

based on their primary clinical features, such as 

dementia, parkinsonism, or motor neuron 

disease. Alternatively, they can be categorized 

according to the anatomical distribution of 
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neurodegeneration, such as frontotemporal 

degeneration, extrapyramidal disorders, or 

spinocerebellar degeneration [1]. Therefore, 

neurodegenerative disorders can be classified 

based on their clinical manifestations, among 

which extrapyramidal movement disorders and 

cognitive and behavioral disorders are the most 

common. A small number of patients have pure 

syndromes, most of them are defined by 

common features between neurodegenerative 

diseases, usually by the accumulation of 

specific proteins and cellular anatomical 

vulnerability. Neurodegenerative diseases 

share many of the underlying processes 

associated with progressive neurological 

dysfunction and death. The important point is 

that disorders of the structural proteins are 

evident even before the onset of the clinical 

symptoms [1]. Today, diagnostic biomarkers 

are not available, except in rare cases where a 

genetic mutation causes the disorder. 

Parkinson’s disease (PD) is a common 

neurological disorder marked by a range of 

motor symptoms, involving bradykinesia, 

tremor, rigidity, and postural instability [2]. The 

degeneration of dopaminergic neurons in the 

substantia nigra pars compacta (SNc) is a key 

factor in PD, leading to persistent alterations in 

neuronal firing rates and oscillatory activity 

among neurons in the Basal Ganglia (BG) [3]. 

One of the electrophysiological features of PD 

is the widespread production of synchronized 

beta band (13-35 Hz) oscillations (β 

oscillations) in BG [4]. These immoderate and 

synchronized oscillations affect the ability of 

the thalamus (Th) to transmit motor information 

[5]. BG dysfunction is associated with 

pathogenesis in PD, including changing the 

firing rate (FR) and excessive synchronized 

beta-band activity (13–30 Hz). Dopamine loss 

disrupts the equilibrium between the activation 

of direct and indirect pathways in the striatum, 

a critical factor in the progression of PD. These 

pathways establish the primary connections 

between the striatum and the deeper structures 

of the Basal Ganglia (BG). Direct pathway 

involves the medium spiny neurons (MSNs) in 

the striatum that express the dopamine D1 

receptors (D1 MSNs), along with substantia 

nigra pars reticulata (SNr) and globus pallidus 

interna (GPi). In contrast, the indirect pathway 

consists of MSNs with the dopamine D2 

receptors (D2 MSNs), globus pallidus externa 

(GPe), and the neurons of the subthalamic 

nucleus (STN). 

The primary motor cortex (M1) is a layered 

structure, with varying morphology, function, 

and neuronal projections across layers. In 

healthy conditions, the dynamics of the M1 

network are essential for performing complex 

movements and motor skill acquisition. The 

neurons that are excitatory in the primary motor 

cortex (M1) involve the neurons of the 

intratelencephalic (IT), found in layers 2 

through 6, and pyramidal-tract (PT) neurons 

located in the layer of 5B. These neurons send 

projections to the striatum and the neurons of 

the subthalamic nucleus (STN) within the Basal 

Ganglia (BG), and they also receive feedback 

from BG and thalamus (Th) [6]. Overall, the 

primary motor cortex (M1) is essential for 

movement regulation and plays an important 

role in the pathophysiology of PD. 

 Computational network models are valuable 

tools for investigating pathological brain 

behaviors and abnormal oscillations. A 

classical computational model, grounded in the 

direct/indirect pathway theory, has been 

developed to explain the mechanisms 

underlying pathological changes in firing rates. 

From the perspective of computational 

modeling, numerous microcircuits within the 

Basal Ganglia (BG) network are capable of 

generating beta-band oscillations, which 

include inhibitory feedback. Among these, the 

STN-GPe circuit is widely recognized as a key 

regulator of beta oscillatory activity [7]. 

Physiological experiments, however, reveal 

more intricate synaptic connections in the BG, 

highlighting the complexity of its circuitry. 

Developing mathematical models provides an 

effective approach to studying the abnormal 

synchronized oscillations characteristic of PD 

[8]. Using these models alongside nonlinear 

dynamics methods offers insights into the 

pathogenic mechanisms behind these 

oscillations [9]. Recent studies on PD modeling 

have predominantly focused on the cortex, 

thalamus, and BG. Notably, Terman and Rubin 
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introduced a computational network model 

based on BG and thalamocortical (TC) 

connectivity. So et al. [10] have enhanced this 

model to offer more precise discharge 

characteristics for both Parkinsonian and 

healthy states. This model is frequently used to 

explore the mechanisms and treatments of 

Parkinson’s disease (PD), although it does not 

account for the role of the intrinsic network of 

the striatum. Numerous biophysical studies 

have shown that the striatum plays a crucial role 

in Parkinsonian movement and that prolonged 

dopamine depletion results in significant 

changes to striatal synaptic plasticity. 

Despite its importance in PD, the role of the 

striatum is often underestimated. Yu and Wang 

in 2019 [5], investigated the increase of the beta 

band oscillations in the BGTC model. Yu et al. 

in 2022 [4], have investigated beta activity in a 

computational model for GPe circuits. Wang et 

al. in 2023 [3], studied the dynamic mechanism 

of the Parkinsonian beta oscillations in the 

STN-GPe network. The main treatments for PD 

involve dopaminergic medications and deep 

brain stimulation (DBS). However, the 

effectiveness of these drugs tends to diminish 

over time, often accompanied by a range of side 

effects. In contrast, DBS is an invasive 

procedure that requires electrodes implanted to 

stimulate the deep brain regions. This option is 

reserved for patients who meet specific criteria, 

Meaning that most individuals with PD are not 

candidates for the treatment. So, there is an 

urgent need to develop more effective and 

accessible treatments for PD. In this study, we 

have considered the M1-BG-Th model for the 

neural structure of healthy and diseased (PD) 

brain neurons, which has BG neurons including 

STN, GPe, GPi, Th and M1 neurons including 

E23, E5A, E5P, and E5B. For the network 

model of the M1-BG-Th, we have examined 

characteristics of the firing rate of the neurons 

and the neurons' power spectrum (PS) 

indicating the oscillations of the beta band of 

neurons. 

 
 

Fig. 1 The block diagram of the research method. 

 

In each of the mentioned characteristics, we 

have studied healthy and Parkinsonian states. 

The block diagram of the research method is 

shown in Fig.1.We have depicted firing rates of 

the STN, the GPe, the GPi, the E23, the E5A, 

and the E5P neurons for healthy and 

Parkinsonian modes, which based on the 

obtained results, in healthy the STN, GPe and 

GPi cells show an irregular discharge pattern.  

In the healthy state, M1 neurons fire in a 

random and sparse discharge pattern. In the 

Parkinsonian state, the GPi fires in a spiking 

firing pattern, GPe fires with a regular firing 

pattern, and an increase in STN, E23, E5A, and 

E5P firing rates is observed. Based on the 

results of the PS of the cells that show the beta 

oscillations, for all neurons, the healthy state 

has lower beta band oscillations and is at the 

bottom of the graph, while for the Parkinsonian 

state, the beta band oscillations are higher and 

there are significant peaks. Finally, we have 

calculated the average firing rate (AFR) of 

neurons in the M1-BG-Th network model for 

both healthy and Parkinsonian modes. In the 

Parkinsonian state, the AFR is elevated for all 

neurons, except for those in the GPi. This study 

effectively illustrates the characteristics and 

differences between healthy and Parkinsonian 

conditions using the M1-BG-Th network 

model. 

Ⅱ. METHODS 
 

A. M1-BG-Th model 
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This model is based on the work of Neymotin 

et al., developed in 2023 [11]. It describes the 

dynamics of the membrane potential of the 

Basal Ganglia (BG) and M1 neurons using the 

Hodgkin-Huxley (HH) framework. The model 

includes BG neurons such as the subthalamic 

nucleus (STN), globus pallidus externa (GPe), 

globus pallidus interna (GPi), and thalamus 

(Th), as well as M1 neurons like the E23 (the 

neurons of the intratelencephalic (IT) in the 

layer of  2), the E5A (the neurons of the IT in 

the layer of  5A), the E5B (the neurons of the 

IT in the layer of 5B), and the E5P (the neurons 

of the pyramidal tract (PT) in the layer of 5B). 

Additionally, the model incorporates two types 

of striatal neurons: The D1 medium spiny 

neurons (MSNs), and the D2 MSNs. Figures 2a 

and b depict the M1-BG-Th network model, 

and its connections, with excitatory 

connections shown by, and inhibitory 

connections represented by . . Based on Fig. 

2b, each Th neuron inhibits one of the M1 

neurons (E23, E5A, E5P, and E5B). Each E5P 

neuron excites three D2 MSN neurons and three 

STN neurons, and each E5A neuron excites 

three D1 MSN neurons. Each D1 MSN neuron 

inhibits two of its neurons and three of the GPi 

neurons, and each D2 MSN neuron inhibits two 

of its neurons and four of the GPe neurons. 

Each of the STN neurons excites two of the GPe 

neurons and two of the GPi neurons. Each of 

the neurons of the GPe inhibits two of its 

neurons, two of the neurons of the STN, and 

two of the neurons of the GPi. Finally, each GPi 

neuron sends an inhibitory input to each of the 

Th neurons. The membrane potential dynamics 

for E23, E5A, and E5B neurons are modeled by 

Equation (1) and for E5P neurons by equation 

(2): 

 

𝐶𝑚  
𝑑𝑉

𝑑𝑡
 =  −𝐼𝐿  −  𝐼𝑁𝑎  −  𝐼𝐾  −  𝐼𝑀                         (1)              

 

𝐶𝑚  
𝑑𝑉

𝑑𝑡
 =  −𝐼𝐿  −  𝐼𝑁𝑎  −  𝐼𝐾  −  𝐼𝑀  −  𝐼𝐶𝑎         (2) 

 

BG-Th model includes STN, GPe, Gpi, Th, and 

two types of MSN neurons D1 and D2 MSN. 

For D1 and D2 membrane potential dynamics, 

the current of the fast potassium (Ik), the current 

of the sodium (INa), the current of the leakage 

(IL), the current of the M (IM), and synaptic 

currents are considered. The membrane 

potential is described by equation (3) [12]. 

 

𝐶𝑚  
𝑑𝑉𝑀𝑆𝑁

𝑑𝑡
 =  −𝐼𝐿  −  𝐼𝑁𝑎  −  𝐼𝐾  −  𝐼𝑀  −  𝐼𝐸5𝐴 / 𝐸5𝑃 − 𝑀𝑆𝑁  −

 𝐼𝑀𝑆𝑁 − 𝑀𝑆𝑁                                                                       (3) 

 

Membrane dynamics of the STN, GPe, and GPi 

cells have been modeled using the framework 

presented by Terman and Rubin [13]. The 

equations of the specific dynamic are outlined 

in relations (4), (5), and (6) 

 

Cm  
dVSTN

dt
 =  −IL  −  INa  −  IK  −  IT  −  ICa  −  IAHP  −

 I GPe − STN  −  IESP − STN                                        (4) 

 

Cm  
dVGPe

dt
 =  −IL  −  INa  −  IK  −  IT  −  ICa  −  IAHP  −

 ISTN − GPe  −  IGPe − GPe  −  ID2 − GPe                       (5) 

 

Cm  
dVGPi

dt
 =  −IL  −  INa  −  IK  −  IT  −  ICa  −  IAHP  −

 ISTN − GPi  −  IGPe − GPi  −  ID1 − GPi                       (6) 
  

For Th neurons, membrane potentials are 

expressed by equation (7): 

 

Cm  
dVTh

dt
 =  −IL  −  INa  −  IK  −  IT  −  ICPi − Th  (7) 

 
 

B. Different states of M1-BG-Th model 

healthy and PD states 

 

Neurological brain diseases lead to an 

imbalance between the activity of neurons in 

the direct and indirect paths. Disturbance and 

change in the mechanism of neurons in the 

direct and indirect paths lead to abnormal 

function in the network model of the M1-BG-

Th due to the creation of pathological activities 

of neurological brain diseases. One of the 

characteristics of pathological activities is the 

change in the firing rate of the M1-BG-Th 

model neurons. The firing rate of neurons, 

which indicates how neurons work, will be 

different in healthy and PD states. In this way, 

M1-BGTh model neurons in a healthy state can 

show an irregular and random firing pattern, 

while in a PD state, their firing can be regular, 

increasing, or decreasing [2, 3]. 
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C. Evaluation of the M1-BG-Th network 

model function 

 

In this section, to evaluate the performance of 

the M1-BG-Th network model, we have 

calculated the AFR of the neuron population 

and beta oscillations by calculating the PS of 

the neurons. AFR is defined as the average 

firing rate of all the neurons within a 

population. We have calculated AFR in the 

form of equation (8) [14] and used it for the 

network model of the M1-BG-Th neurons, 

which is a suitable concept for statistical 

explanation and measurement of nerve spike 

activity. 

 

AFR(t) =
1

∆t
 
nact(t;t+∆t  )

N
                                           (8) 

 

Where N is the population size of the nact(t; t +
∆t)is number of the spikes occurring between t 

nd +∆t , and ∆tIs a small-time interval. A high 

 

 level of AFR indicates a faster firing rate and 

neural excitation, and a low level of AFR 

indicates a slower firing rate and inhibition of 

neural activity. The power spectrum of a train 

of spikes is a key measure for investigating 

neural variability, and its calculation is a key 

challenge for investigating neural firing 

variability. In practice, the power spectrum is 

calculated from an averaging process [15]. The 

power spectrum of neurons reveals key 

characteristics of their activity. Neurons exhibit 

various peaks in their responses, with the shape 

and location of these peaks being influenced by 

factors like the applied stimuli and the intrinsic 

biophysical properties, like the input current 

density and the channel noise. Estimating the 

power spectrum of neuronal activity is a useful 

approach for analyzing neural outputs, 

commonly applied in neurophysiological 

recordings like the multiunit activity (MUA), 

the single spike trains, and potentials of the cell 

membrane. It is also utilized in the outputs of  

         a)                                                   b) 
 

 

 

 

 

 
Fig.2  a) M1-BG-Th network model. b) connections between the M1-BG-Th network model neurons.  
 

Various neural models to assess the neuron’s 

response to input stimuli and for spectral 

analysis of the experimental recordings from 

the neurons of the GP in PD patients [16]. In 

this study, we have calculated the power 

spectrum to investigate the beta oscillations of 

the neurons of the M1-BG-Th network model, 

which is another characteristic of Parkinson's 

disease. Neurological brain diseases such as PD 

lead to an increase in beta oscillations and 

neuron synchrony caused by changes in the 

strength of synaptic connections of neurons and 

input currents from different parts of the brain 

to the neurons of the network model of the M1-

BG-Th. Beta oscillations and synchrony of 

neurons are another characteristic of 

Parkinson's disease, which shows different 

physiological and pathological conditions. 

Synchronized and excessive oscillations of M1-

BG-Th network model neurons disrupt the 

performance of network model neurons in the 

ability to transmit motor information [4, 5]. In 

this study, we have obtained the power 

spectrum to examine the beta oscillations of the 

M1- BG-Th, which is another feature of the PD. 
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Ⅲ .Results 

 
 

Since excitatory input is applied to M1 neurons 

in the direct and indirect brain path through Th 

neurons, in this paper, unlike Yu et al. (2023), 

we have examined the complete model of the 

M1-BG-Th while considering the connections 

between Th and M1 neurons. On the other hand, 

since inhibitory and excitatory connections 

between neurons and the number of 

connections between them are important in the 

function of the M1-BG-Th network model and 

play an important role in examining 

characteristics of healthy and parkinsonian 

states, we have also applied them in M1-BG -

Th model. To investigate the treatment of PD 

with electrical and optogenetic stimulations, we 

have studied the firing rate of neurons and the 

beta oscillations of the neurons without 

applying stimulation for the M1-BG-Th 

network model. Yu et al., have done the 

simulation in Neuron software, whereas, we 

have implemented all the simulation steps with 

MATLAB software to access the parameters 

and data of neurons of the M1-BG-Th network 

model. 

 

A. Firing characteristics of the neurons 

of the M1-BG-Th model in healthy 

and PD states 
 

Neuronal firing characteristics play a crucial 

role in understanding neurological disorders, 

especially Parkinson’s disease (PD). The M1-

BG-Th network model consists of neurons of 

the STN, GPe, GPi, E23, E5A and E5P. The 

changes in firing rates and patterns between the 

healthy and PD states significantly impact 

motor control and are key indicators of 

dysfunction in the motor circuitry. In the 

healthy state (Fig. 3a), the M1 neurons (E23, 

E5A, and E5P) exhibit a random and sparse 

discharge pattern, while BG neurons (STN, 

GPe, and GPi) fire irregularly and 

asynchronously. This firing behavior ensures a 

balanced inhibitory-excitatory interaction in the 

M1-BG-Th network, leading to normal motor 

function. GPi neurons provide appropriate 

inhibitory input to Th neurons, preventing.  

 

a)  
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b)  

 Fig.3  Firing rate of the M1-BG-Th network model neurons. a) healthy state. b) PD state. 

  

Excessive excitation. The neurons relay proper 

excitatory input to M1 neurons, maintaining 

normal motor activity. STN and GPe maintain 

irregular and asynchronous firing, ensuring a 

dynamic and adaptive motor control system. 

This normal firing pattern allows the network to 

function efficiently, preventing abnormal 

oscillatory activity and motor dysfunction. 

In PD (Fig. 3b), there are significant alterations 

in neuronal firing rates and patterns, leading to 

pathological activity in the M1-BG-Th 

network. M1 neurons (E23, E5A, and E5P)  

 

show increased firing rates and synchrony. This 

excessive excitatory activity contributes to the 

generation of pathological motor commands, 

leading to symptoms like rigidity and tremors. 

GPi neurons fire in a bursting pattern. This 

abnormal burst activity results in excessive 

inhibition of the Th neurons, disrupting the 

normal relay of excitatory signals to M1. GPe 

neurons fire more regularly, reducing their 

ability to regulate STN activity. This change 

weakens the indirect pathway, leading to 

excessive excitatory input from STN to GPi. 

STN neurons show increased discharge 

frequency, leading to stronger excitatory input 

to GPi, which further exacerbates the excessive 

inhibition of Th. 

 

B. Beta oscillations of the M1-BG-Th 

model in healthy and PD states 
 

Beta oscillations (13–30 Hz) play a crucial role 

in motor control, and their abnormal 

enhancement is a hallmark of Parkinson’s 

disease (PD). These oscillations are linked to 

motor impairments such as rigidity and 

bradykinesia. To analyze beta oscillatory 

activity in both healthy and PD states, the 

Power Spectrum (PS) of key neurons in the M1-

BG-Th network (STN, GPe, GPi, and E23) was 

calculated, with results presented in (Fig. 4). In 

the healthy state, beta oscillations in the M1-

BG-Th network exhibit a broad and 

unstructured spectral distribution without 

distinct peaks. This absence of prominent beta 

activity suggests that: STN, GPe, and GPi 

neurons do not show excessive 

synchronization, allowing smooth motor 

execution. E23 neurons in M1 display low 

amplitude beta activity (PS range: 0–30), which 

is within normal physiological limits. The lack 
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of dominant beta rhythms reflects the ability of 

the network to flexibly modulate motor 

commands without excessive inhibition or 

excitation. 

In the Parkinsonian state, the M1-BG-Th 

network exhibits abnormally strong and 

synchronized beta oscillations, characterized by 

distinct peaks in the PS of STN, GPe, GPi, and 

E23 neurons (Fig. 4). The key changes include: 

STN, GPe, and GPi neurons show enhanced 

beta peaks, indicating increased 

synchronization within the basal ganglia. GPi 

neurons exhibit strong beta-band activity, 

leading to excessive inhibition of the thalamus, 

which disrupts normal motor output. E23 

neurons in M1 also show increased beta 

oscillations, though within a lower PS range (0–

30). This suggests that cortical activity is 

influenced by abnormal basal ganglia rhythms, 

contributing to impaired voluntary movement. 

The increase in beta oscillations in PD is 

primarily due to the dysfunction of the cortico-

basal ganglia-thalamic loop, which results in 

excessive excitation of the STN due to reduced 

GPe inhibition, leading to enhanced beta-band 

activity in STN and GPi. Overactive GPi 

neurons impose excessive inhibition on the 

thalamus, reducing excitatory output to M1. M1 

neurons (E23) adopt the abnormal beta rhythm, 

reinforcing pathological oscillations and 

contributing to motor deficits such as 

bradykinesia and rigidity. Clinical Implications 

of Beta Oscillations in PD Increased beta 

synchronization is associated with movement 

difficulties, as excessive beta oscillations 

reduce the flexibility of motor control.  

 

 

 
 
Fig.4 Beta oscillations of the E23, STN, GPe, and GPi for healthy and PD states. 

 

 

C. AFR of the M1-BG-Th model in 

healthy and PD states 

 

The Average Firing Rate (AFR) represents the 

number of spikes generated by neurons in a 

given period, providing insights into network 

activity in both healthy and Parkinsonian (PD) 

states. By analyzing AFR in different neurons 

of the M1-BG-Th network model, we can 

understand how PD alters neural dynamics. The 
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results of this analysis are presented in Table 1. 

In the healthy state, the AFR of neurons in the 

M1-BG-Th network follows a balanced pattern, 

ensuring proper motor function. M1 neurons 

(E23, E5A, E5P) fire at a moderate rate, 

supporting controlled and flexible 

movement.BG neurons (STN, GPe, GPi) 

maintain normal activity, contributing to the 

proper regulation of thalamic output. GPi 

neurons provide appropriate inhibitory control 

over Th neurons, allowing the thalamus to 

deliver proper excitatory input to M1. This 

balanced AFR distribution ensures smooth 

motor control, preventing excessive or deficient 

neural excitation. 

 
Table. 1 AFR of the M1-BG-Th network model neurons 

in healthy and PD states 

 
AFR of the 

PD state 

AFR of the 

healthy 

state  

M1-BG-Th network 

model neurons 

180 100 STN 
490 390 GPe 
980 1030 GPi 
230 60 E23 
80 20 E5A 
40 10 E5P 

 

 In PD, AFR increases for all neurons except 

GPi, leading to network dysfunction. STN 

neurons show increased AFR, resulting in 

excessive excitatory input to GPi, disrupting 

normal inhibitory control. GPe neurons fire at a 

higher rate, reducing their ability to regulate 

STN activity, and further amplifying STN 

overactivity. M1 neurons (E23, E5A, E5P) 

exhibit increased AFR, contributing to 

abnormal motor commands and pathological 

activity. GPi neurons exhibit reduced AFR 

(inhibitory state), impairing their ability to 

suppress Th neurons effectively. The neurons 

receive insufficient inhibition from GPi, 

leading to a failure in delivering appropriate 

excitatory input to M1. This abnormal AFR 

distribution disrupts motor signal processing, 

resulting in increased beta oscillations, 

excessive synchronization, and the hallmark 

motor symptoms of PD (tremors, rigidity, and 

bradykinesia). 

 

 

Ⅳ. CONCLUSION 
Neurological brain diseases lead to 

disturbances in the function of the brain's neural 

network. In this study, the M1-BG-Th network 

model including BG neurons (STN, GPe, and 

GPi), Th neurons, and M1 neurons (E23, E5A, 

E5P, and E5B) for healthy and diseased (PD) 

brain neurons is considered. Since the firing 

rate of network neurons and beta oscillations 

are important parameters for network model of 

the M1-BG-Th network model, we have 

examined both parameters for healthy and 

Parkinsonian states and finally, we have 

obtained AFR for the neurons of the network 

model of the   M1-BG-Th. Based on the 

obtained results, in the healthy state, BG 

neurons fire irregularly and M1 neurons fire 

randomly and sparsely. In the PD state, the 

firing of BG neurons is bursting, regular, and 

incremental. Also, this fire increase is observed 

for M1 neurons. Fewer beta oscillations are 

seen in the healthy state, but for the PD state, 

these oscillations have been increased and have 

distinct peaks. On the other hand, the AFR in 

the Parkinsonian state is raised for all the 

neurons except GPi, which leads to disruption 

in the performance of the M1-BG-Th network 

and creates pathological activities. Therefore, 

our proposed model has been able to show the 

abnormal characteristics of neurodegenerative 

diseases. Which paves the way for the treatment 

of neurological brain diseases with electrical 

and optogenetic stimulations. 
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  Fetal growth is a critical stage in prenatal care that requires the timely identification of abnormalities in 

ultrasound images to protect the health of the fetus and mother. Ultrasound-based imaging has played an 

essential role in diagnosing fetal malformations and abnormalities. Despite significant advances in ultrasound 

technology, detecting abnormalities in prenatal images still poses considerable challenges. These challenges 

often arise from time constraints and the need for substantial expertise from medical professionals. The aim 

is to classify several K classes of random forest support vector machine (SVM) and use this for evaluation. 

The aim is to perform a multi-class classification of 3 health stages, including healthy, suspicious, and diseased 

brain. Methods based on machine learning are among the methods that help experts. In this research, a 

machine learning method based on image scattering features is presented for the classification of fetal brain 

ultrasound images. In the proposed method, after integration, which is based on the maximum integration rule 

in scattered features, and discrete wavelet and cosine transform, a method based on the mutual information is 

presented for feature selection. The selected features have been used to diagnose the health status of the fetus 

with the help of the nearest neighbor. The evaluation criteria of accuracy, recall rate, accuracy and F criterion 

have been used for evaluation. The support vector machine classifier has shown its superiority in comparison 

with other classifiers with 98% accuracy, 97% accuracy, 99% recall rate, and F-criterion more than 98%. 

The comparison of the results obtained in the diagnosis of the health status of the fetus compared to other 

methods shows the superiority of the proposed method. 

 

 

 

 

 

 

I. INTRODUCTION 

Pregnancy is a significant and joyous phase in 

a woman's life that necessitates careful 

attention to maternal health. As a 

comprehensive assessment of fetal health prior 

to birth, it is essential for effective monitoring 

and outcomes. The fetus is dependent on the 
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mother in terms of the exchange of oxygen and 

carbon dioxide in the placenta, and this, in turn, 

depends on the sufficient concentration of gases 

in the mother's blood, the amount of blood in 

the uterus, the placenta's exchanges, and gas 

transfer to the fetus. A defect in any of the 

above factors can lead to a lack of oxygen in the 

fetal tissues (hypoxia), which, despite the 

presence of compensatory mechanisms, may 

cause an abnormal increase in the level of acid 

in the blood (acidosis) [2].To monitor the 

growth and development of the fetus, several 

laboratory tests are suggested every trimester. 

One of these tests is ultrasound imaging, which 

is usually used in clinical evaluation to check 

the health status of the fetus in the womb [3]. 

The main goal is to monitor or diagnose the 

possible disease of different parts of the fetus, 

especially the brain, which can prevent the 

possible death of the fetus. If there is a system 

that can predict the future state of the fetus 

according to the current state, it can prevent 

problems such as miscarriage or serious injuries 

[4]. Determining fetal health is a difficult 

process that depends on various input factors. 

Depending on the input symptoms, the health 

status of the fetus is diagnosed. Sometimes it is 

difficult to determine the diagnosis of diseases, 

and there may always be differences of opinion 

between specialist doctors. As a result, the 

diagnosis of diseases is often performed in 

uncertain conditions and can sometimes cause 

undesirable errors. Therefore, the vague nature 

of diseases and incomplete patient data can lead 

to uncertain decision-making. One of the 

effective approaches to solve such a problem is 

the use of methods based on machine learning 

and deep learning in the diagnostic system [5]. 

Machine learning is widely used in studies 

related to fetal health diagnosis. Traditional 

machine learning techniques require manual 

feature extraction before classification. 

However, for automated analysis of neuron 

imaging data, manual feature extraction cannot 

accurately detect fetal brain health [6]. 

Approaches based on user-defined features in 

classical machine learning have limitations. 

Improved performance can be achieved by 

learning specific features to achieve the desired 

result. In the traditional machine learning based 

method, pattern recognition processes are used. 

In this category of methods, after applying pre-

processing on the image, numerous features, 

including textural, spectral, geometric and 

statistical features are extracted from the target 

image. These features are reduced in another 

step with the help of methods based on principal 

component analysis PCA, independent 

component analysis LDA. At this stage, feature 

selection methods can be used to select the most 

effective features [7,8]. Methods such as SFFS 

hierarchical forward feature selection or 

methods based on information theory, such as 

maximum correlation and minimum correlation 

mRMR can be used. Finally, the selected 

features are classified with the help of 

classifications such as support vector machine 

SVM, k-nearest neighbor KNN, and random 

forest RF. In this category of methods, a 

learning criterion or clustering methods are 

used to check the presence of lesions in the 

images. In the traditional methods of machine 

learning and pattern recognition, Euclidean, 

Mahalolunbis, or Shahr Block learning criteria 

are also used [9]. In the pre-processing, noise 

removal is done, and it is associated with image 

quality improvement processes. Feature 

extraction includes the use of different 

descriptors to find unique features from each 

image [10]. The most common descriptors used 

for feature extraction are transform domain 

methods such as discrete Fourier transform, 

discrete wavelet transform, discrete cosine 

transform, space domain-based methods such 

as internal and statistical features, and image 

histogram. Methods based on building 

information, such as local binary patterns, 

extracting effective features from images, are 

an essential step in diagnosing fetal brain health 

in ultrasound. The extracted features are used to 

create a one-to-one mapping between the target 

images. Extracting unique features is very 

important in creating accurate one-to-one 

mapping [11]. In the last decade, there have 

been many tendencies towards feature 

extraction with scattered representation. 

Because in this representation, there are almost 

only a small number of non-zero coefficients, 

or they have been scattered after applying 

transformations on the image. This trend seems 
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to be due to the potential to reconstruct the 

signal or image from a smaller number of 

measurements than conventional methods to 

reconstruct an entire signal. The features 

extracted in scatter transformations are more 

unique. One of the significant scatter 

transforms is the use of wavelet transform. The 

purpose of wavelet transform is a desirable 

strategy to establish an optimal balance 

between time accuracy and frequency accuracy. 

At higher frequencies, the wavelet transforms 

gains temporal information at the cost of losing 

frequency information. While at lower 

frequencies, it gains frequency information at 

the expense of temporal information loss. This 

favorable approach to information exchange is 

useful for digital signal processing and music 

applications. Machine learning algorithms can 

be presented for segmentation and 

classification of normal and abnormal fetal 

brain ultrasound images. Through the studies, it 

was found that although there have been many 

studies and researches to determine the health 

of the fetal brain in ultrasound images, there is 

still a long way to go before reaching a 

favorable answer in the classification and 

diagnosis of these images. According to the 

studies conducted in the review of the research 

literature and the background of the research, it 

is clear that the methods based on image 

scattering transformations such as wavelet 

transformation and its group can provide 

effective and suitable features for this work. 

Based on the presented content, the innovations 

of this research can be stated as follows: 

Using scattering transform based on the wavelet 

transform to detect fetal brain health stage in 

ultrasound images. 

Using feature selection methods to identify 

informative data in ultrasound images. 

The goal of this study is to implement a 

classification of multiple K classes using 

random forest and support vector machine 

(SVM) methodologies for evaluation. This 

classification will focus on three health stages: 

healthy, suspicious, and diseased brain. 

II. LITERATUREANDRE

LATED WORKS 

A. Research Background 

In [12], a complex neural network (ECNN) 

model is used, which combines basic models to 

classify fetal plates using an open-access 

database containing 12,400 images with six 

fetal plates. Previous studies on this database 

included advanced CNN methods, and the pre-

trained Densenet-169 model provided an 

accuracy of 93.6%, which is presented as a deep 

learning model named FetSAM. The [13], 

proposed model is an advanced deep learning 

model, which aims to revolutionize fetal head 

ultrasound segmentation and thereby increase 

the accuracy of prenatal diagnosis. In [14], a 

three-way crossover randomized control 

method (trial registration: 

ChiCTR2100048233) reported evaluating the 

effectiveness of a deep learning system, the 

Prenatal Ultrasound Diagnosis Artificial 

Intelligence Behavior System (PAICS), in 

helping to detect fetal intracranial 

malformations. In [15], a U-Net fetal head 

measurement tool is presented, that uses a 

hybrid dice and binary cross-entropy loss to 

calculate the similarity between actual and 

predicted regions.  Reference [16] has proposed 

to use ultrasound images in a deep learning 

model to automate fetal organ classification. 

The proposed model has been trained and tested 

on a dataset of fetal ultrasound images, 

including two datasets from different regions, 

and they have been recorded with different 

machines to ensure the effective detection of 

fetal organs. In [17], ultrasound images were 

analyzed using a Dense Net model. The 

accuracy of the trained model in correctly 

identifying cystic hygroma cases was 

evaluated. This evaluation was conducted by 

calculating sensitivity, specificity, and the area 

under the receiver operating characteristic 

(ROC) curve. In [18], to investigate the 

application of Deep Learning Neural Network 

(DLNN) algorithms to identify and optimize the 

ultrasound image to analyze the impact and 

value in the diagnosis of fetal central nervous 

system (CNSM) malformation. It was in the 

diagnosis of ultrasound images (before birth) by 
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designing and implementing a new framework 

called Defending Against Child Death (DACD) 

[19]. The existing method is a semi-automatic 

method in which the Convolution Neural 

Network (CNN) algorithm is used to classify 

ultrasound images. In [20], the maturity of 

current deep learning classification techniques 

was evaluated for their application in a real 

maternal and fetal clinical setting. In [21], has 

proposed two main methods based on deep 

convolution neural networks for automatic 

detection of six standard fetal brain screens. 

One is a deep convolutional neural network 

(CNN) and the other is domain transfer learning 

based on CNN. The suggested methods in 

diagnosing fetal brain health in ultrasound 

images have low accuracy. The quality of the 

classification affects the diagnostic accuracy of 

the systems because many features, such as 

shape, aspect ratio, and border smoothness, are 

related to the contour of the region involved in 

brain pain. Furthermore, an automatic and real-

time classification system may help radiologists 

identify disease in the fetal brain and provide a 

signal in case of human error. 

B. Scattered Representation Analysis 

Scattered representation is a way to reduce 

natural or artificial observations to their basic 

components. These signals often have scattered 

representation in a domain with regard to the 

place or time in which they usually appear. For 

tasks such as compression or parsing, it is often 

more efficient and meaningful to transform a 

signal into another domain or to find its 

scattered representation among a collection of 

basic signals, called atoms, that make up a 

dictionary. Analytical dictionaries have precise 

definitions that make them convenient in some 

situations, but are generally difficult and 

inefficient. For greater consistency, scattered 

coding methods were introduced to allow atoms 

from a mix of different cultures to be selected 

and added to represent signals [22]. Following 

this paradigm shift, Olshausen and field were 

among the first to propose a way to train a 

dictionary on examples associated with the 

desired signal [23]. Other algorithms, such as 

the K-SVD dictionary learning algorithm, are 

widely used today [24]. 

C. Discrete Cosine Transform (DCT) 

Discrete cosine transform (DCT) represents a 

signal as a superposition of cosine waveforms 

with different frequencies. This transform is 

similar to the Discrete Fourier Transform 

(DFT) but only deals with real domain 

numbers. More importantly, DCT is more 

efficient in representing limited signals. This is 

because the Fourier Transform implicitly 

assumes a periodic expansion of a signal, which 

creates a discontinuity at the boundaries for 

most signals. Conversely, DCT assumes an 

anti-symmetric expansion to the signal. This 

problem leads to creating more sine waves to 

represent the signal with DFT than with DCT. 

The two-dimensional DCT transform of a 

signal 𝑥 with dimensions 𝑀 and 𝑁 is: 

 

𝐴(𝑝, 𝑞) =

𝛼𝑝𝛼𝑞 ∑ ∑ 𝑥(𝑚, 𝑛) cos
(2𝑚+1)𝜋𝑝

2𝑀
∗𝑁−1

𝑛=0
𝑀−1
𝑚=0

 𝑐𝑜𝑠
(2𝑛+1)𝜋𝑝

2𝑁

0 ≤ 𝑝 ≤ 𝑀 − 1
0 ≤ 𝑞 ≤ 𝑁 − 1

 

𝛼𝑝 = {

1
√𝑀

⁄ 𝑝 = 0

√2 ⁄ 𝑀 1 ≤ 𝑝 ≤ 𝑀 − 1
                    (1) 

𝛼𝑞 = {

1
√𝑁

⁄ 𝑞 = 0

√2 ⁄ 𝑁 1 ≤ 𝑞 ≤ 𝑁 − 1
 

The DCT inverse transform is used to 

reconstruct the signal: 

𝑥(𝑚, 𝑛)

= ∑ ∑ 𝛼𝑝𝛼𝑞𝐴(𝑝, 𝑞) cos
(2𝑚 + 1)𝜋𝑝

2𝑀
  

𝑁−1

𝑞=0

𝑀−1

𝑝=0

∗ 𝑐𝑜𝑠
(2𝑛 + 1)𝜋𝑞

2𝑁

0 ≤ 𝑝 ≤ 𝑀 − 1
 0 ≤ 𝑞 ≤ 𝑁 − 1

                (2)   

In this reconstruction of those basic 

functions

𝛼𝑝𝛼𝑞𝐴(𝑝, 𝑞) cos
(2𝑚+1)𝜋𝑝

2𝑀
𝑐𝑜𝑠

(2𝑛+1)𝜋𝑞

2𝑁
   form a 

dictionary and by the coefficients if 𝐴(𝑝, 𝑞). are 

integers, the number of atoms is equal to the 

size of the signal (𝑀 × 𝑁) and the dictionary is 

orthogonal. Figure 1, shows an orthogonal 
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dictionary. Because of its simplicity, the 

orthogonal dictionary has often been used in the 

past, but relaxing this restriction allows sparse 

representations of signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Orthogonal DCT dictionary with 64 atoms of 

size 8x8. 

This is achieved by allowing non-integer values 

for 𝑝 and 𝑞, thereby increasing the number of 

atoms beyond the size of the signal. An 

example of such an overcomplete dictionary is 

shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2. Overcomplete DCT dictionary with 256 

atoms of 8x8 dimensions. 

 

D. Discrete Cosine Transform 

Wavelet transform can be calculated by 

equation (3): 

 

𝐶(𝑎, 𝑏) =
1

√𝑎
∫ 𝑓(𝑥)𝜓∗(

𝑥−𝑏

𝑎
)𝑑𝑥 

∞

−∞
               (3) 

 

The 𝜓 basis wavelet is designed to be reversible 

and computationally efficient. In practice, the 

translation and scaling parameters are as𝑎 =
 𝑎0

𝑚, 𝑏 =  𝑛𝑏0𝑎0
𝑚as𝑚،𝑛∈ℤ, 𝑎0> 1،𝑏0، Disc > 0 

are discrete in this case. The wavelet transform 

(DWT) becomes: 

 

𝐶(𝑚, 𝑛)   

=
1

√𝑎0
𝑚

∫ 𝑓(𝑥)𝜓∗ (
𝑥 − 𝑛𝑏0𝑎0

𝑚

𝑎0
𝑚 ) 𝑑𝑥         (4) 

∞

−∞

 

The signal 𝑓 can be reconstructed by summing 

the weighted wavelets: 

 

𝑓 = ∑ 𝑐𝑚,𝑛                                                      (5)

𝑚,𝑛

 

 

The following values are usually used: 𝑎0 = 2, 

𝑏0 = 1. There are 𝜓 options where the set of 

wavelets 𝜓𝑚,𝑛 form a canonical basis, in which 

case the wavelets are critically in. Each scale is 

sampled to accurately capture the newly 

introduced details. The scale of the simplest 

such wavelet is the scattering wavelet (Figure 

3). Various other wavelets have been designed 

by Stromberg [25], Meyer [26], Daubeshiz [27] 

and others. 

 

 

 

 

 

 

 

 

 

           (a)                 (b)                   (c)                      
Fig. 3. a: 1D Haar wavelet, b: three configurations of 

Haar wavelet in 2D. Black color is negative and 

white is positive, c: Haar orthogonal dictionary 

consisting of wavelet expansion and translation. 
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In higher dimensions, the DWT is just a 

separable one-dimensional transform. So, for 

an image, first the columns and then the rows 

are individually transformed in the same way as 

any 1D signal. This makes DWT translation and 

rotation sensitive in higher dimensions. To 

overcome this issue, the Stationary Wavelet 

Transform (SWT) was introduced by Beylkin 

[28], which ignores orthogonality in favor of 

over-completeness. This is achieved by 

removing subsampling and summing all 

translations of wavelet atoms. 

 

 

III. Methodology 
The main goal of this research is to diagnose the 

health of the fetal brain with the help of image 

scattering features. In this regard, fetal brain 

ultrasound images should be pre-processed in a 

standard way. The block diagram of the 

proposed method is shown in Figure 4. In the 

following, different parts of the proposed 

method will be examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. The block diagram of the proposed method. 

 

A. Preprocessing 

In this paper, a fast algorithm for grayscale 

images is proposed as an adaptive two-way 

filter, which is otherwise computationally 

expensive and complex. This can be extended 

to color filtering using channel-wise 

processing. Bidirectional filtering is used as an 

edge preservation tool in image enhancement 

applications. Along with a low-pass spatial core 

(which helps with smooth scattering), it uses a 

core to prevent smoothing near the edges. As a 

result, the filter can smooth homogeneous areas 

and preserve sharp edges at the same time. 

Gaussian spatial and domain cores were shown 

to improve the upscaling capacity of the two-

way filter by adjusting the width and center of 

the curved range at each pixel. A two-way filter 

is shown as equations 6 and 7: 

(6)   )())()(()()()( 1 jifijifijwitg

J





 

))i()ji(f()j(w)i(
j

i


                     (7)   

In this article, spatial and locative cores will be 

used in the form of equations 8 and 9: 

(8)                                          
2
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2
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
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
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22

2
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
















t
t

i

In the above equation, 𝜎(𝑖) , 𝜌  are effective 

width and bandwidth Gaussian window. In this 

way, Ω = [−3𝜌, 3𝜌]2 unlike the classic 

bilateral filter, which uses a fixed-amplitude 

kernel in each pixel, the width σ(i) is allowed to 

change in each pixel in (8) and (9). In addition, 

the center of f(i) can be different from f(i) used 

in the classical two-way filter. Figure 5 shows 

the improved image with the help of the 

bilateral filter.
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Fig. 5. An example of the improved image in the filtering method. 

 

 

B. Scattered Transformers 

B.I. Scattered Representation Analysis 

The curve transformation, which is a 

combination of the previous two 

transformations, allows us to analyze the image 

with different block sizes. The work process is 

that first, the image is decomposed into a set of 

wavelet bands, and the analysis of each band is 

performed by the Regretted transformation. 

The size of the blocks can be changed in each  

level. In fact, it is a two-dimensional 

transformation that cannot be separated into 

one-dimensional transformations parallel to the 

coordinate axes. Curve transformation is 

presented for optimal representation of two-

dimensional discontinuities. In this research, 2 

levels of curve transformation are used. Figure 

6a shows the feature map of level 1, and Figure 

6b shows the feature map of level 2 of the curve 

transformation. The feature vector obtained 

from these two levels will be included in the 

feature vector of each pixel.

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 6. Sub-bands created from curve transformation in a: level one, b: level two. 

 

 

 

B.II. DCT implementation 

The DCT algorithm is a compression and 

scattering algorithm to extract image scattering 

features. Due to the slowness of the previous 

calculation methods in the reviewed articles, at 

this stage, by applying this algorithm, we 

increase the processing speed to a great extent. 

By compressing the image, it scatters the image 

and reduces the processing load to the program 

imposes. Figure 7 shows the process of 

applying the discrete cosine transformation 

function. Also, Figures 3- 6 show the scattered 

images by the DCT algorithm. 

Contourlet coefficients Level 1 Contourlet coefficients Level 2 
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Fig. 7. The process of applying the discrete cosine transformation function. 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 8. Image resulting from the DCT algorithm on 

the original image. 

 

 

B.III. Features based on wavelet transform 

Figure 9-a shows the wavelet transformation on 

the image and how to create the sub-image and 

related filters. Part B shows the division of the 

image. In this figure, the approximation of the 

image with A and sub-images, or in other 

words, the details of the image in high 

frequencies, H, are vertical details, D are 

diagonal details, and V are horizontal details in 

the image. If higher levels of wavelet 

transformation are needed, this transformation 

is applied in part a. The edges of the image are 

visible in the sub-bands obtained from this 

transformation in such a way that the 

horizontal, vertical, and diagonal edges are 

shown in each of the sub-images. If the fabric 

has damage, the edges in each corresponding 

sub-band will be shown more clearly. Figure 10 

shows the scattered image created from the 

wavelet transform in different sub-bands. 

 

 

 

 

 
 

References 

Fig. 9. Block diagram of wavelet transformation on 

the image a) bank of filters, b) dividing the image 

into approximation and detail sub-bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Scattered image created by wavelet transform. 

 

C. Feature integration 

Three feature maps are created by applying the 

DCT algorithm, wavelet transform, and curve 
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scattering transform, and the selection of the 

best features plays an important role in the final 

segmentation. Merge rules are used to merge 

the image at the feature level. The most 

common rules used for image integration are 

the selection of maxima, minima, and finally, 

averaging. The following relationships 

represent these rules. In this thesis, the 

proposed method, as well as the other methods, 

each of which uses the integration law to select 

the maximum coefficients. 

 
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑑𝑒𝑓

= 𝑀𝑎𝑥{𝐶𝑈𝑅𝑉𝑑𝑒𝑓(𝑖. 𝑗). 𝐷𝐶𝑇𝑑𝑒𝑓(𝑖. 𝑗). 𝐷𝑊𝑇𝑑𝑒𝑓(𝑖. 𝑗)}  (10)    

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑑𝑒𝑓

= 𝑀𝑖𝑛{𝐶𝑈𝑅𝑉𝑑𝑒𝑓(𝑖. 𝑗). 𝐷𝐶𝑇𝑑𝑒𝑓(𝑖. 𝑗). 𝐷𝑊𝑇𝑑𝑒𝑓(𝑖. 𝑗)}   (11) 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑑𝑒𝑓

= 𝐴𝑣𝑔{𝐶𝑈𝑅𝑉𝑑𝑒𝑓(𝑖. 𝑗). 𝐷𝐶𝑇𝑑𝑒𝑓(𝑖. 𝑗). 𝐷𝑊𝑇𝑑𝑒𝑓(𝑖. 𝑗)}   (12) 

 

n the above equation, 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑑𝑒𝑓is the output 

image after selecting the area in thefeature map. 

𝐶𝑈𝑅𝑉𝑑𝑒𝑓(𝑖. 𝑗) represents the feature map 

resulting from curve transformation. 

𝐷𝐶𝑇𝑑𝑒𝑓(𝑖. 𝑗) represents the map obtained from 

the DCT thinning transform and at the end, 

𝐷𝑊𝑇𝑑𝑒𝑓(𝑖. 𝑗) is discrete wavelet of transform 

feature map. 𝑀𝑖𝑛  ، 𝑀𝑎𝑥and Avg indicate the 

selection of minimum, maximum, and average, 

respectively. Max is used in this research. 

D. Feature integration 

Evaluation criteria play a decisive role in the 

feature selection. In other words, these criteria 

are the basis of feature selection. The selection 

of an optimal subset of the feature set directly 

depends on the appropriate selection of the 

evaluation criteria. In a way that, if any 

evaluation criterion assigns an inappropriate 

value to the subset of optimal features, this 

subset is never selected as the optimal subset. 

The values that different evaluation criteria give 

to a subset are different. In the concept of 

classification and its related issues, an optimal 

criterion must have a Bayesian error rate. E(S) 

is calculated from equation 13. Equation 14 is 

also used in discrete space [29]. 

 

    (13)               )))( (max1)(()( | dsScssE
i

iS



(14)                           )))|( (max1(   S Sicor

As can be seen from equations 13 and 14, E(S) 

is desired as a sum or integral and is also non-

linear and non-negative. In equation 15, the 

upper bound of E(S) is calculated,  SCH  the 

conditional entropy C in each S is given. 

(15)                                           
2

)|(
)(

SCH
sE 

Calculating E(S) directly is very difficult 

because S is a combination of features. As a 

result, most researchers prefer to use criteria 

based on correlation and distance. Equation 16, 

shows the evaluation criterion of the correlation 

coefficient. The covariance of the variables a 

and b is the variance. 

(16)                             
)var()var(

),cov(
),(

ba

ba
bar 

Pearson's correlation coefficient is calculated in 

equation 17. 

 

 

 

 

Mutual Information (MI) is obtained from 

equation 18. )0(p is Probability Density 

Function (PDF). 

(18)                  
)()(

)(
log)(),( 

a b bpap

abp
abpbaI  

Equation19, illustrates symmetric uncertainty 

(SU). H (0) is the entropy of each feature.  

 

(19)                     
)()(

);(2
),(           

bHaH

baI
baSU




Distance information is calculated in equation 

20. H(a|b) is the conditional entropy a in term 

b. 

(20)                            
2

)()(
),(

abHbaH
bad


  

Finally, the last criterion, which is very 

common for evaluation, is calculated from 

   
(17)

2222
),(

  

  
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equation 21, and it is the Euclidean distance 

criterion. 

       (21)                                 
2

),(   ibiabad

These common criteria are used to evaluate 

feature selection methods. Although there are 

other criteria, such as Laplacian score, Fisher 

Score [30], and other criteria, information 

criteria require features in a discrete state, and 

discretization is required if they are used [31]. 

E. Classification 

For the experiment, three different machine 

learning algorithms were used together: support 

vector machine (SVM), K-nearest neighbors 

(KNN), ensemble method, and random forest 

(RF). 

SVM is a statistically supervised learning 

algorithm. It was originally developed for 

regression work but later used for linear and 

non-linear classification. In an SVM, the cloud 

that defines the boundary in the data space is 

trained to maximize the distance to the nearest 

data. SVMs can have higher performance in 

classification and regression problems than 

other statistical and ML techniques. 

KNN is a widely used method for data mining. 

This method determines the similarity between 

the new data and the existing data and groups 

the new data into groups similar to the existing 

data. The algorithm works on this basis. 

1.Choosing the number of K neighbors. 

2.Calculate the "Euclidean distance", which is 

to measure the distance between any two points. 

Formula like equation 22. 

 

(22)              ))((( 2
12

2
)

12
YYXXD   

 

3.From the calculation in step 2. 

4. The bundle for a new data point is assigned 

to the maximum number of neighbors. 

RF random forest is a group algorithm that uses 

bagging as a set method and decision tree as an 

individual method, thus helping to reduce 

variance and bias in improved findings. The 

classifier combines multiple decision trees and 

a more robust classification with better 

generalization and easier hyperparameter 

tuning to overcome overfitting problems. For 

classification tasks in RF, each tree provides a 

classification or takes a "vote". 

IV. EVALUATION 

In this article, a new method based on image 

thinning features and common classifications is 

proposed. In the following, the proposed 

method will be evaluated with common 

evaluation criteria. The system used for 

simulation is an Intel processor system. The 

desired hardware is a 5-core (Core™) i7 CPU 

with a working frequency of 2.60GHz. 8 GB of 

RAM. The Windows 10 operating system is 

installed on this system. The software used is 

MATLAB 2022b. To classify the integrated 

features, the mutual validation method is used 

with a factor of 10 (K=10), which means that 

the data is first divided into 10 equal categories 

(because the factor of 5 has a better bias and 

considering that the number the registrations 

were 120, the test coefficient was 30%, and the 

training was 70%. In each stage, one group out 

of 10 categories is used for testing and four 

other categories are used for training, and 

finally, the average is made between the 10 

classification indicators of the test. This process 

is generally shown in Figure 11. 
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Fig. 11. Cross-validation method from the tenth rank. 

 

 

The proposed method is analyzed using a 

variety of Accuracy and Precision evaluation 

criteria. These two criteria are among the most 

significant evaluation criteria for diagnosis and 

classification. Therefore, these two criteria are 

used in this research. Two accuracy and 

precision evaluation criteria, recall rate and 

sensitivity, and F-Measure are introduced and 

calculated according to equations 23 and 27 and 

used to evaluate the system [32].  

(23)                                      Re
FNTP

TP
call




 

(24)                        
FPFNTPTN

TPTN
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




(25)                                
FPTN

TN
ySpecificit




(26)               
2

2
_

FNFPTP

TP
MeasureF




  

In these equations, TP, is true positive, TN, is 

true negative, FP, is false positive, and FN, is 

false negative. 

A. Databases 

A dataset will be used in this paper. Fetal head 

ultrasound is a dataset for measuring fetal head 

circumference (HC), ultrasound imaging used 

to measure fetal biometrics during pregnancy. 

The dataset is part of the HC18 challenge and 

contains a total of 1334 two-dimensional (2D) 

ultrasound images of a standard plane that can  

 

be used to measure HC. All two-dimensional 

(2D) ultrasound images of HC were collected 

from the database of the Department of 

Obstetrics and Gynecology, Radboud 

University Medical Center, Nijmegen, The 

Netherlands. Ultrasound images were obtained 

from 551 pregnant women who received a 

routine ultrasound screening examination 

between May 2014 and May 2015. Only 

embryos that did not show any developmental 

abnormalities were included in this study. 

Images were obtained by experienced 

sonographers using a Voluson E8 or Voluson 

730 ultrasound machine (General Electric, 

Austria). CMO Arnhem-Nijmegen approved 

the collection and use of these data for this 

study. Due to retrospective data collection, 

informed consent was waived. All data were 

anonymized according to the principles of the 

Declaration of Helsinki. The size of each 2D 

ultrasound image was 800 x 540 pixels, with 

pixel sizes ranging from 0.052 to 0.326 mm. 

This large variation in pixel size is the result of 

ultrasound settings by the sonographer (depth 

and zoom settings typically vary during the 

exam) to account for different fetal sizes. The 

size of each 2D ultrasound image was 800 x 540 

pixels, with pixel sizes ranging from 0.052 to 

0.326 mm. This large variation in pixel size is 

the result of ultrasound adjustments by the 

sonographer (depth and zoom settings typically 
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vary during the exam) to account for different 

fetal sizes. Figure 12 shows sample ultrasound 

images from each trimester. The distribution of 

GA in this study is shown in Figure 12. Most of 

the data were obtained after 12 and 20 weeks of 

gestation, as these are the standard times for 

routine ultrasound screening for pregnant 

women in the Netherlands. During each 

examination, the sonographer manually 

annotated the HC. This was done by drawing an 

ellipse that best fit the head circumference. 

Figure 12 also shows a comparison between the 

HC distribution and the Verburg et al. growth 

curve. The reference GA was determined by 

measuring the CRL between 20 mm (8+4 

weeks) and 68 mm (12+6 weeks). This database 

is available at https://datasetninja.com/fetal-

head-ultrasound. 

 

 

 

 

 

 

 
Fig. 12. Some images in the database. 

B. Results 

Table 1, shows the test accuracy and validity 

loss of the proposed network with three tests in 

multi-class AD classification. The average of 

each time in the detection of each state is also 

determined. It is important to repeat the 

experiment to show that the results obtained are 

not random. The best average test accuracy is 

obtained with the proposed network in the 

second run. Table 2 shows the final evaluation 

results in more detail and in each test in terms 

of accuracy, recall rate, F criterion, and AUC 

criterion. 

 
Table 1.Comparison of the accuracy of fetal brain health 

diagnosis in different implementations with different 

classifications. 

 

Class Name SVM KNN  RF  

Normal 0.9593 0.9688 0.9900  
Suspicious 0.9984 0.9999 0.9685  

Sick  0.9729 0.9801 0.9801  

 

Figure 13 shows the comparison of accuracy in 

different conditions of fetal brain health in three 

tests, as well as the average value. As can be 

seen in Figure 13, the accuracy of diagnosis in 

all stages is more than 98%. This is important 

because of the entry of the most informative 

bands of the image into the proposed deep 

neural network, and also the settings made in 

the proposed deep network. 

 

 
Fig. 13. Graphical comparison of the results in 

detection accuracy. 

 

Table 2.Comparison of the results obtained in different             

tests in the rest of the criteria. 

 

Normal suspicious sick

SVM 1 0.9685 0.9801

KNN 0.9688 1 0.9801

RF 0.9593 0.9984 0.9729

1

0.9685 0.98010.9688

1
0.9801

0.9593

0.9984

0.9729

0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01

p
er

ce
n

t

accuracy

SVM KNN RF

Evaluation  

Criteria 

Clas

s 

Name 

 Normal Suspicious Sick 

 

 SV

M 

0.9979 0.9984 1.0000   
  

 

Precisio
n 

KN

N 

0.9988 0.9999 1.000
0  

 

 RF 0.8964 1.0000 1.0000  

 
SV

M 

0.9593 0.9729 0.9713   
 

Recall 
KN

N 

0.9686 0.9801  0.9781      
 

 RF 1.0000 0.9801 0.9740   

 
SV

M 

0.9782 0.9855 0.9854  

F-
Measure 

KN

N 

0.9836 0.9899 0.9899   

 RF 0.9454 0.9899 0.9868  

 
SV

M 

0.9994 0.9995 0.9996  

AUC 
KN

N 

0.9996 0.9997 0.9997  

 RF 0.9996 0.9997 0.9997  
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Figure 14, shows the comparison of accuracy, 

figure 15, compares the recall rate, figure 16, 

compares the F criterion and figure 17, shows 

the comparison of AUC in different states of 

fetal brain health in three tests with three 

categories used.  

 
Fig. 14. Comparison of the accuracy of fetal brain 

health diagnosis for each category 

. 

As seen in these figures, the criteria obtained in 

all stages are more than 98%. This is important 

because of the inclusion of the most informative 

features in the desired and proposed 

classifications, as well as the adjustments made 

in the proposed method. 

 

 

 

 

 

 

 

 

 

 
Fig. 15. Comparison of the recall rate of fetal brain 

health diagnosis for each category. 

 

 
Fig. 16. Comparison of the F criteria for diagnosing 

fetal brain health status for each category. 
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Fig. 17. Comparison of the AUC criterion for 

detecting fetal brain health status in each test. 

C. Comparison with other research  

The proposed performance was evaluated three 

times with three different categories. Also, the 

results obtained were compared with [33]. This 

research has been divided into two groups: 

healthy and sick. To make a comparison, using 

the same data sample, data partitioning, and the 

number of steps, an additional evaluation is 

compared with the Alex Net training used on 

the dataset [34]. The classification results have 

been evaluated in terms of the average 

classification precision and accuracy of each 

AD stage. Table 3 provides a comparative 

analysis and also summarizes the classification 

results with other approaches. 

 
Table 3. Comparison with the reference [35]in 

diagnosing fetal brain health status. 

Pathology [35] SVM KNN AlexNet 

Normal 98.34 100.0 96.88 91.73 

Suspicious 94.55 96.85 100.0 100.0 

Sick  94.97 98.01 98.01 95.14 

 

In the comparative analysis, the proposed 

model has performed better than [34]and the 

trained AlexNet model. In all implementations, 

the accuracy and correctness of the proposed 

method are much better. The reason for this is 

the use of the most informative scattered 

extracted features with the help of the selection 

of the proposed feature and the settings made 

on the proposed method. In order to further 

evaluation, the proposed method has been 

compared with the other methods of diagnosing 

fetal brain health status, which have been done 

by other researchers. The database of these 

studies is the same in Table 4. In [36], deep 

learning based on support vector machines [37], 

deep learning based on convolutional neural 

networks [38] are compared. The results 

obtained in accuracy in the three cases 

compared show the superiority of the proposed 

method in diagnosing the progress of the 

disease stage. 

V. CONCLUSION 

Early diagnosis of fetal diseases is very 

important to improve the quality of life of 

people after birth and to develop improved 

treatment and targeted drugs. 

 
Table 4. Comparison with other research in different 

situations. 

Reference Subjects Task ACC 

[36] 
43,890 images, 
16,463 subjects 

Sick 

again 

NL 

94.10 

87.14 

85.85 

[37] 

INTERGROWTH21st 

dataset  

INTERBIO-21st 

dataset [40] 

Sick 

again 

NL 

 

97.79 

94.73 

42.70 

[38] 

INTERGROWTH21st 

dataset  

INTERBIO-21st 

dataset [40] 

Sick 

again 

NL 

 

96.47 

88.47 

80.17 

Proposed 

D2 Model 

INTERGROWTH21st 

dataset  

INTERBIO-21st 

dataset [40] 

 

 

Sick 

again 

NL 

 

98.61 

98.67 

98.87 

In this article, the purpose of investigating the 

effectiveness of ultrasound imaging in 

advanced machine learning techniques for the 

classification and diagnosis of multiple classes 

of fetal health was carried out. This study 

proposed the use of various machine learning 

classifiers along with various features based on 

the thinning transformation to perform 3-class 

classification. The proposed method was 

trained three times separately on single-channel 

ultrasound images. Using the proposed method 

helped to achieve better performance. The 

results of this study show that the integration of 

imaging methods and machine learning can 

help to make diagnostic decisions in the early 

diagnosis of fetal diseases. Diagnosing fetal 

health status can aid drug discovery by 

providing better pathogenesis to measure the 

effects of targeted therapies that can slow 

disease progression. By combining clinical 

imaging with machine learning techniques, we 

can help uncover patterns of functional changes 

in the brain associated with the development of 

fetal health and can help identify risk factors 

and prognostic indicators. 
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   Zinc oxide nanoparticles (ZnO-NPs) have emerged as one of the leading nanomaterials, 

demonstrating strong antimicrobial properties and high potential in controlling bacterial infections. 

ZnO-NPs exert their antibacterial effects through the generation of reactive oxygen species, damage to 

the cell membrane, and disruption of bacterial DNA and protein functions. Numerous studies have 

shown that these nanoparticles are effective against a wide range of Gram-positive and Gram-negative 

bacteria, including antibiotic-resistant strains. The small size, high specific surface area, and ability to 

penetrate bacterial cell walls are key factors contributing to the efficacy of these nanoparticles. 

Furthermore, due to their minimal side effects on human cells and high biocompatibility, ZnO-NPs are 

considered a suitable option for clinical and industrial applications. The applications of these 

nanoparticles have been extensively reviewed, and potential strategies to enhance their efficiency and 

safety have been proposed. This study highlights the significant potential of ZnO-NPs to either replace 

or complement existing methods in combating bacterial infections, offering a novel approach to 

addressing antibiotic resistance and other challenges. This article reviews the antibacterial 

mechanisms of ZnO-NPs, examining factors influencing their activity and performance, and their 

potential applications in medical and industrial fields.
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I. INTRODUCTION 

Nanotechnology has garnered significant 

global attention in the field of modern materials 

science and its applications in medicine and 

other scientific disciplines. Nanoparticles, 

defined as particles with sizes ranging from 1 to 

100 nanometers, have demonstrated their 

efficacy in treating infectious diseases, 

including antibiotic-resistant strains, in both in 

vitro and animal models. Due to their high 

surface area, nanomaterials exhibit remarkable 

mechanical, optical, magnetic, and chemical 

properties. These tiny particles represent a 

modified version of fundamental elements, 

achieved through the manipulation of their 

atomic and molecular characteristics. Research 

has shown that antibacterial mineral materials 

often include metal nanoparticles and metal 

oxide nanoparticles, such as Ag, Au, Cu, TiO₂, 
and Zinc oxide (ZnO). Among metal oxide 

nanoparticles, ZnO has found extensive 

applications due to its optical (1), 

semiconducting (2), ultraviolet (UV) absorbing 

(3), and antimicrobial (4) properties (5-8). Zinc 

(Zn) is an essential element used in medicine, 

biology, and industry. Adults require 8 to 15 mg 

of Zn daily, with 5 to 6 mg lost through urine 

and sweat. Zn is vital for bones, teeth, enzymes, 

and proteins (9). The use of metallic 

nanoparticles and their oxides represents a 

promising approach to combating antibiotic 

resistance (10). Metal oxide nanoparticles are 

notable for their catalytic inhibitory activity in 

antimicrobial compounds. However, their 

bactericidal mechanisms depend on various 

factors, such as morphology, composition, and 

concentration (11). Given the emergence of 

new bacterial mutations, increasing antibiotic 

resistance, and the proliferation of pathogenic 

strains, there is a pressing need for the 

advancement and development of more 

effective antibacterial agents. ZnO has always 

been of interest due to its strong antibacterial 

properties (12). With the rise of bacterial 

resistance to conventional antibiotics, there is a 

growing need for innovative and effective 

methods to combat bacterial infections. Zinc 

oxide nanoparticles (ZnO-NPs) have emerged 

as a promising alternative due to their strong 

antibacterial properties, high biocompatibility, 

and relatively low production costs. The exact 

mechanisms of ZnO-NPs antibacterial effects, 

as well as the optimization of synthesis 

techniques to increase efficiency and lower 

potential toxicity, remain unclear despite the 

large number of investigations that have been 

done on their synthesis and applications. This 

article provides a comprehensive review of 

ZnO-NPs synthesis methods, analyzes their 

antibacterial mechanisms, and introduces 

medical applications while proposing strategies 

for the effective use of this technology in health 

and treatment. A deeper understanding of these 

aspects can pave the way for the development 

of more effective and safer treatments for 

bacterial infections. 

II. STRUCTURE AND 

PHYSICOCHEMICAL PROPERTIES OF 

ZINC OXIDE 

All of the human body's tissues contain Zn; 

however, muscle and bone have the highest 

concentration (around 85% of the total zinc 

content) (13). Zn is essential for the proper 

functioning of numerous macromolecules and 

enzymes, serving as a coenzyme with catalytic 

and structural roles. Furthermore, protein 

subdomains can interact with DNA or other 

proteins thanks to the special framework that 

zinc-finger structures offer (14). ZnO is an 

inorganic compound that typically appears as a 

white powder and is insoluble in water (15). 

ZnO exhibits three crystalline structures: 

wurtzite, zinc-blende, and rock salt, with the 

latter being rarely observed. Crystalline ZnO 

has a wurtzite structure with a hexagonal unit 

cell. Each anion is surrounded by four cations 

in a tetrahedral arrangement, representing sp³ 

covalent bonding and creating an asymmetric 

structure (16). ZnO-NPs are versatile materials 

widely used in biosensors, cosmetics, drug 

delivery, and agriculture due to their optical, 
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electrical, piezoelectric, and antimicrobial 

properties. The morphology of ZnO-NPs, such 

as nanorods (17), nanowires (18), and 

nanoflowers, depends on the synthesis process 

(19). Traditional methods for synthesizing 

ZnO-NPs, including sol-gel, hydrothermal, and 

mechanochemical processes, are often time-

consuming, expensive, and require high 

temperatures and specialized precursors. These 

methods also generate significant chemical 

waste (20). In contrast, green synthesis of 

nanoparticles utilizes renewable organic 

extracts from sources such as yeast, bacteria, 

and plants. This approach avoids the use of 

toxic chemicals and helps reduce waste (21). 

Compared to other nanoparticles in the same 

group, Zn demonstrates higher antibacterial 

activity against Gram-positive bacteria (9). The 

synthesis of ZnO-NPs has led to their 

investigation as a novel antibacterial agent. In 

addition to strong antibacterial and antifungal 

properties, these nanoparticles exhibit high 

catalytic and photochemical activities. 

Furthermore, ZnO has high optical absorption 

in the UVA and UVB ranges, making it suitable 

for antibacterial applications and UV protection 

in cosmetics (22). ZnO is a wide-bandgap 

semiconductor (3.37 eV at room temperature) 

with unique properties such as high 

transparency, strong luminescence, and 

excellent electron mobility (23). Despite partial 

covalent characteristics, ZnO primarily features 

strong ionic bonding in its Zn-O structure, 

contributing to superior durability, enhanced 

selectivity, and greater thermal resistance 

compared to organic and inorganic materials 

(4). According to an investigation using 

scanning electron microscopy and energy 

dispersive X-ray, ZnO-NPs are mostly made up 

of Zn (37.5%), oxygen (19.9%), and carbon 

(42.6%), which is consistent with the green 

synthesis technique used (24). 

III. METHODS FOR SYNTHESIS 

OF ZINC OXIDE 

NANOPARTICLES 

ZnO-NPs are produced using various physical 

and chemical methods such as solvent 

evaporation, sol-gel, physical degradation, 

interference lithography, vapor condensation, 

and microemulsion deposition (25, 26). 

However, chemical methods often employ 

toxic substances that are hazardous to operators 

and harmful to the environment, while physical 

methods require high energy, pressure, and 

temperature (27). Common toxic compounds 

used in chemical synthesis include 

triethylamine (28), oleic acid (29), thioglycerol 

(30), polyvinyl alcohol (31), and ethylene 

diamine tetraacetic acid (32). These compounds 

are typically used as stabilizers or coatings to 

control nanoparticle size and prevent 

aggregation. However, residual amounts of 

these compounds in the final product may 

introduce toxicity, limiting the biomedical and 

environmental applications of the nanoparticles 

(25). Green synthesis of metal and metal oxide 

nanoparticles using biological methods 

(particularly plant extracts, microorganisms, 

and fungi) has emerged as a novel field in 

nanotechnology, offering a sustainable 

alternative to chemical and physical approaches 

(33, 34). Natural sources such as plants, algae, 

fungi, and non-pathogenic microorganisms 

(e.g., Lactobacillus bacteria) are used in the 

biosynthesis of ZnO-NPs. This approach 

represents an eco-friendly, cost-effective, and 

green solution that utilizes biological 

compounds (e.g., enzymes and secondary 

metabolites) for the safe and sustainable 

production of nanoparticles with minimal 

environmental contamination and without 

hazardous chemicals (32, 35). Plant extracts are 

more widely used in nanoparticle synthesis than 

microorganism-based methods due to their 

bioactive phytomolecules (e.g., flavonoids and 

terpenoids) and advantages such as high 

biocompatibility and simple extraction 

processes (36). Phytochemical studies have 

shown that key plant-derived compounds and 

metabolites, including lupeol, oleanolic acid, 

kaempferol glycosides, quercetin, 

leucocyanidin, ursolic acid, sitosterol, rutin, 

anthocyanins, and proanthocyanidins possess 

antioxidant, antibacterial, antimutagenic, and 

chemopreventive properties (37). Studies 

indicate that ZnO-NPs synthesized from plant 

extracts exhibit superior antibacterial properties 

compared to conventional drugs in disease 

treatment (38). In this synthesis, plant 
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components (roots, leaves, stems, seeds, and 

fruits) are used because their extracts contain 

high concentrations of phytochemicals that act 

as stabilizing and reducing agents. The most 

common method for preparing ZnO-NPs from 

leaves or flowers involves washing, 

sterilization, drying, grinding, adding Milli-Q 

H₂ O, boiling, filtering, and finally mixing with 

hydrated zinc nitrate, ZnO, or zinc sulfate (39). 

Although green synthesis of ZnO-NPs is 

promising, variability in plant extract 

composition can lead to heterogeneity in 

nanoparticle size, shape, and purity. This 

necessitates precise control of reaction 

parameters (e.g., metal ion concentration, 

temperature, pH, and time) to ensure 

reproducibility (40-43). Recent studies have 

demonstrated the efficacy of lactic acid bacteria 

(LAB) in mediating ZnO-NP synthesis (44, 45). 

Given their ability to synthesize metallic 

nanoparticles  (e.g., Se, Au, and Ag), LAB 

strains are recognized as efficient cellular 

factories for metal nanoparticle production. 

Gram-positive LAB possess thick cell walls 

composed of peptidoglycan, lipoteichoic acid, 

collagen, and polysaccharides. Due to their 

negative electrophoretic mobility, these layers 

serve as sites for biosorption of metal ions and 

bioreduction, attracting metal cations to initiate 

nanoparticle biosynthesis (46, 47). Green 

production of ZnO-NPs using bacteria such as 

Lactobacillus and Bacillus has gained attention 

as a sustainable and eco-friendly alternative to 

chemical methods. Species like Lactobacillus 

plantarum and Lactobacillus casei significantly 

contribute to metal ion reduction and ZnO-NP 

formation through their bioactive metabolites 

and enzymes. Studies show these nanoparticles 

are predominantly spherical (average size: 10–

13 nm) and exhibit exceptional antibacterial 

and antibiofilm properties (48-50). Green 

synthesis of ZnO-NPs has also been achieved 

using non-Lactobacillus bacteria (e.g., Bacillus 

subtilis), enabling tailored control over 

nanoparticle size and morphology. These 

nanoparticles are effective in organic pollutant 

removal and exhibit strong antibacterial activity 

against Salmonella typhimurium, Escherichia 

coli, and Staphylococcus aureus (S. aureus) 

(51). Enzymes produced by non-pathogenic 

Lactobacillus strains can act as reducing, 

stabilizing, or capping agents in nanoparticle 

synthesis (43). 

IV. THE EFFECT OF ZINC OXIDE ON 

GRAM-POSITIVE AND GRAM-

NEGATIVE BACTERIA 

ZnO-NPs exhibit effective antimicrobial and 

anti-biofilm properties, impacting a wide range 

of Gram-positive and Gram-negative bacteria 

(52). ZnO-NPs effectively target drug-resistant 

bacteria, disrupt biofilms, and reduce the 

virulence of pathogens. They also demonstrate 

promising antifungal properties, particularly for 

skin infections (53). During the exponential 

development phase, ZnO-NPs exhibit potent 

antibacterial properties against both Gram-

positive and Gram-negative bacteria. However, 

their antibacterial efficacy significantly 

decreases during the lag and stationary phases 

of bacterial growth (54). Biologically 

synthesized ZnO-NPs have demonstrated 

significantly higher growth inhibition 

compared to chemically synthesized ZnO-NPs 

and other conventional antimicrobial agents. 

ZnO also exhibits notable selectivity, greater 

durability, and good thermal resistance. These 

unique properties make ZnO a powerful tool in 

combating a wide range of microorganisms, 

including S. aureus (55, 56), Escherichia coli 

(57). TiO₂, ZnO, and Ag are used in various 

fields to regulate microbial proliferation. 

However, ZnO exhibits greater 

biocompatibility compared to TiO₂ due to its 

exceptional photocatalytic efficiency (58). 

Green-synthesized ZnO-NPs demonstrate 

antibacterial properties against both Gram-

positive and Gram-negative bacteria (59). 

Typically, Gram-negative bacteria show lower 

sensitivity to ZnO-NPs compared to Gram-

positive bacteria. This increased resistance in 

Gram-negative bacteria can be attributed to the 

unique structure of their cell walls, which, 

unlike Gram-positive bacteria, include an 

additional outer membrane composed of 

lipopolysaccharides that reduces their 

susceptibility (60, 61). ZnO-NPs inhibit the 

formation of amyloid peptide fibrils, which are 

essential for bacterial biofilm formation (62). 

The combination of meropenem and ZnO-NPs 

reduces the expression of genes associated with 
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biofilm formation. Additionally, the small size 

of ZnO-NPs enhances their ability to penetrate 

the biofilm matrix, leading to stronger anti-

biofilm activity. Complete biofilm removal in 

certain areas has been observed using scanning 

electron microscopy (63). Based on evidence 

from studies, ZnO-NPs, particularly those 

synthesized via green methods, are considered 

promising anti-biofilm agents for medical 

applications (e.g., implant coatings) and the 

control of biofilm-related infections (64). 

According to studies, ZnO-NPs reduce the 

ability of S. aureus to form biofilms by 

inhibiting the expression of biofilm-related 

genes such as ica A, ica D, and fnb A. These 

nanoparticles exhibit strong antibacterial 

activity against multidrug-resistant strains of S. 

aureus, including methicillin-resistant, 

vancomycin-resistant, and linezolid-resistant 

strains (65) (Table 1). 

 

Reference Mechanism of action Effect of ZnO-NPs 
Type of 

bacteria 

Name of 

bacteria 

(66) 

Production of reactive oxygen 

species (ROS), disruption of cell 

membrane function 

Inhibition of bacterial 

growth, damage to the 

cell wall, and plasma 

membrane 

Gram 

positive 

 

Staphylococcus 

aureus 

(67) 

Inhibition of the expression of 

biofilm-related genes such as 

icaA and fnbA 

Reduction of biofilm 

formation 

(68) 
Damage to lipids and membrane 

proteins 

Increase in cell 

membrane permeability 

Gram 

positive 

 

Streptococcus 

pyogenes 

(69) 

ROS production, damage to 

lipopolysaccharides, and 

membrane proteins 

Inhibition of bacterial 

growth, damage to the 

outer and plasma 

membranes 

Gram 

negative 
Escherichia coli 

(70) 

Disruption of the biofilm matrix 

and inhibition of bacterial 

attachment to surfaces 

Reduction of biofilm 

formation 

Gram 

negative 

Pseudomonas 

aeruginosa 

(71) 

Increase the permeability of the 

outer membrane and facilitate 

the entry of antibiotics. 

Increase the sensitivity 

to antibiotics 

Gram 

negative 

Klebsiella 

pneumoniae 

(25) 

ROS production, damage to the 

cell membrane, and disruption 

of DNA function 

Inhibition of bacterial 

growth and reduction of 

spore formation 

Gram 

positive 

 

Bacillus subtilis 

(72) 

ROS production, damage to the 

outer membrane, and disruption 

of DNA function 

Inhibition of bacterial 

growth and reduction of 

biofilm formation 

Gram 

negative 
Salmonella typhi 

 

V. THE EFFECT OF ZINC OXIDE ON 

OTHER MICROORGANISMS 

ZnO-NPs exhibit strong antifungal and anti-

yeast properties against various harmful fungi 

and yeasts. Studies have shown that 

biosynthesized ZnO-NPs are effective against 

Fusarium solani, Fusarium oxysporum, 

Sclerotinia sclerotiorum, and Aspergillus 

terreus (73). Additionally, ZnO-NPs produced 

using Serratia nematodiphila have shown 

significant antifungal activity against 

Alternaria species and Xanthomonas oryzae pv. 

Oryzae (74). ZnO-NPs significantly inhibit the 

growth of yeasts such as Saccharomyces 

cerevisiae (75), Candida albicans (76), and 

Candida tropicalis (77). Aquatic ecosystems 
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may be significantly affected by the toxicity of 

nanoparticles, and algae are an ideal organism 

for understanding the impact of nanoparticle 

toxicity. ZnO-NPs have an effect on the algae 

Chlorella vulgaris (78), Microcystis 

aeruginosa (79), and Spirulina platensis (80). 

VI. MECHANISM OF ACTION OF ZINC 

OXIDE ON BACTERIA 

ZnO-NPs, recognized as Generally Recognized 

as Safe by the U.S. Food and Drug 

Administration (FDA), are a suitable 

alternative to antibiotics against drug-resistant 

bacteria (81). ZnO-NPs exert their antibacterial 

effects by disrupting bacterial DNA replication 

processes, causing cell membrane rupture, 

binding to proteins and DNA, generating 

reactive oxygen species (ROS), and altering 

(often reducing) the expression of several genes 

(10). Metal oxide nanoparticles induce 

oxidative stress, membrane damage, and cell 

death by infecting bacteria, increasing ROS 

production, causing membrane peroxidation, 

lipid bilayer peroxidation, and leakage of 

cytoplasmic components (82). Due to its 

powerful oxidative properties, ZnO damages 

bacterial cell membranes and disrupts their 

metabolic pathways by generating ROS and 

releasing zinc ions (Zn²⁺). Further studies on 

the antibacterial mechanisms of ZnO-NPs 

could enhance our understanding of bacterial 

resistance mechanisms and improve the contact 

time and efficacy of ZnO-NPs in inhibiting 

bacteria (11). The reduction of Zn²⁺ disrupts 

intracellular Zn²⁺ balance, leading to enzyme 

inactivation, chromatin structure alteration, 

inhibition of DNA replication, and ultimately 

bacterial death (83). 

A. Generation of Reactive Oxygen Species by 

Zinc Oxide 

The toxicity of metallic and metal oxide 

nanoparticles is primarily attributed to their 

ability to generate ROS (84). Several 

investigations have demonstrated that the high 

amounts of ROS generated in ZnO aqueous 

solutions aid in the antibacterial activity of 

ZnO. These species include hydroxyl radicals 

(OH), hydrogen peroxide (H₂O₂), and singlet 

oxygen, which play a key role in killing bacteria 

(55). ROS disrupt or alter respiratory cycles, 

protein synthesis, food metabolism, and DNA 

replication, leading to cell death (25). Exposure 

to UV radiation stimulates valence band 

electrons in ZnO-NPs, creating holes in the 

conduction band that require energy absorption 

to cross the bandgap (85). Electrons in the 

conduction band can reduce molecular oxygen 

on the ZnO surface, forming superoxide anions, 

which can react with each other to produce 

other ROS, such as H₂O₂ (86). H₂O₂ penetrates 

the cell membrane, causing membrane damage 

and degradation of DNA and membrane 

proteins. Negatively charged peroxides cannot 

cross the cell membrane, and OH⁻ accumulates 

on the bacterial cell membrane, destroying it 

(87). 

B. Release of Zn²⁺ Ions and Their Impact on 

the Antibacterial Activity of Zinc Oxide 

Nanoparticles 

The antibacterial activity of ZnO-NPs is 

primarily associated with the release of Zn²⁺ 
ions, which can inhibit bacterial growth by 

disrupting metal-dependent enzymes and 

osmotic homeostasis. This toxicity occurs even 

without direct physical contact with the 

nanoparticles and is highly dependent on 

environmental conditions, such as soluble 

compounds and surface defects of the particles 

(88). ZnO-NPs can slowly release Zn²⁺ ions in 

aqueous solutions, which can penetrate the cell 

membrane, leading to protein denaturation and 

disruption of cellular respiration. However, 

studies have shown that increasing Zn²⁺ 
concentration does not significantly enhance 

antibacterial effects. Additionally, experiments 

have demonstrated that minimal Zn²⁺ release 

under certain conditions does not fully explain 

high cell mortality. Therefore, Zn²⁺ release 

should not be considered the primary 

mechanism of ZnO's antibacterial activity (87) 

(Figure 1). 
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Figure 1. Mechanisms of action of ZnO-NPs on bacteria, including the generation of reactive oxygen species, release of 

Zn²⁺ ions, and their effects on the cell membrane and bacterial metabolism.

VII. APPLICATIONS OF ZINC OXIDE IN 

MEDICINE AND INDUSTRY 

ZnO nanostructures, due to their 

multifunctional properties, are utilized in 

sensors, energy harvesting, and electronic 

devices. Additionally, in the medical and 

antiviral fields, ZnO is highly regarded for its 

excellent biocompatibility, solubility in 

alkaline environments, and polar surfaces (89). 

The use of nanoparticles as drug carriers and for 

targeted delivery of substances, particularly in 

treating infections caused by microbial 

biofilms, is a significant and actively 

researched area among scientists (90). Drug 

delivery systems are innovative technologies 

that facilitate the transport of drugs, including 

tablets and vaccines, into or throughout the 

body. These systems protect drugs from 

degradation and maintain their stability until 

they reach the target site, thereby enhancing the 

efficacy and safety of therapeutic treatments 

(91). The small size of nanoparticles enables 

them to cross the blood-brain barrier (92). 

Doping ZnO with Gd³⁺ and Al³⁺ improves 

electrical conductivity and increases charge 

carrier concentration. The high exciton binding 

energy of ZnO is attributed to its high dielectric 

constant, which is influenced by defects such as 

Zn interstitials and oxygen vacancies. The 

enhanced dielectric properties of ZnO-NPs are 

due to oxygen vacancies, nanoscale size effects, 

and the electronegativity of added impurities. 

For instance, Li-In doped ZnO achieved a 

dielectric constant of 3800, with ε′ stabilizing at 

higher frequencies for doped samples, unlike 

pure ZnO, where dielectric relaxation was 

observed in all samples (93). ZnO is well-

known for its antibacterial properties in 

skincare creams and UV protection. The use of 

modified ZnO-NPs (4%) in coatings for 

hospital implants can be more effective in 

controlling bacterial infections. Moreover, 

these modified nanoparticles are a better option 

for use in skin lotions and UV protection 

compared to conventional ZnO (4). In addition 

to FDA approval, ZnO-NPs are suitable for 

various biomedical applications, including 

medical devices, biomedical diagnostics, tissue 

engineering, healthcare, and drug delivery, due 

to their simple, safe, and cost-effective 

production process (94-97). In biology and 

medicine, ZnO-NPs hold significant value due 

to their anticancer (98), antimicrobial (99), anti-

inflammatory (100, 101), wound-healing (102), 

bioimaging (103, 104), and antidiabetic (105, 

106) properties. The freeze-dry technique was 

used to create a composite bandage composed 

of ZnO-NPs and alginate hydrogel. This porous 

bandage not only demonstrated exceptional 

antibacterial activity against a wide range of 

pathogens but also promoted controlled 



 

   A. Jafari-Sales, et al.                                                                 A review of the antibacterial properties of zinc oxide…

 

36 

degradation and accelerated blood clotting 

(107). According to preliminary research, ZnO-

NPs at low concentrations in a biomaterial can 

enhance tissue integration by improving 

fibroblast attachment, promoting new blood 

vessel growth, and accelerating wound healing. 

ZnO-NPs may also increase levels of 

angiogenic factors such as vascular endothelial 

growth factor through the production of ROS 

(108). Skin wounds should be treated with 

topical medications that stimulate tissue repair 

while minimizing free radical production (109, 

110). Consequently, having a wound dressing 

material that possesses both antibacterial 

properties and wound-healing capabilities is 

crucial (111). 

VIII.  KEY CHALLENGES IN 

ANTIMICROBIAL AND ENVIRONMENTAL 

APPLICATIONS OF ZINC OXIDE 

NANOPARTICLES 

Organic materials reduce the antimicrobial 

efficacy of ZnO-NPs by affecting their stability 

and surface properties. For instance, ZnO-NPs 

perform better in organic-free environments 

because organic compounds limit their activity 

by coating the nanoparticle surfaces (112). The 

production process of ZnO-NPs, including the 

high-energy ball milling of metal powders, 

reduces particle size and ultimately yields 

nanoparticles. However, the resulting 

nanoparticles often have irregular sizes and 

shapes, which may lead to contamination from 

the surrounding environment or milling 

process, rendering them unusable (113). While 

antimicrobial nanoparticles hold significant 

potential, they face challenges such as 

resistance development, biocompatibility and 

toxicity concerns, environmental impact, 

nonspecific effects on microbiota, formulation 

optimization, drug delivery hurdles, and 

regulatory frameworks (114). The use of man-

made nanoparticles in agriculture, such as 

nanofertilizers and nanopesticides, has led to 

their accumulation in soil. Although ZnO-NPs 

are more biocompatible, their antimicrobial 

properties may disrupt soil microbiota and 

interfere with key processes such as the 

nitrogen cycle and plant growth (115). The 

toxicity of nanoparticles varies depending on 

their type and concentration. For example, 

while ZnO-NPs provide UV protection, they 

can penetrate the skin and generate ROS, 

leading to cellular damage. Toxicity tests that 

examine nanoparticle characteristics, exposure 

pathways, distribution, and biological 

interactions are essential to ensure safe usage 

(116). Although the application of ZnO-NPs 

has been limited due to concerns over toxicity, 

stability, and environmental effects, targeted 

synthesis techniques have enabled the 

development of safer and more efficient 

formulations. These advancements pave the 

way for maximizing the antimicrobial and 

protective capabilities of nanoparticles in 

healthcare products, provided that safety 

assessments and regulatory standards evolve 

alongside technological progress to ensure safer 

and more effective products (117). 

IX. CONCLUSION 

ZnO-NPs have garnered significant attention 

due to their unique properties, such as 

antimicrobial and optical activities. As potent 

antibacterial agents, ZnO-NPs exhibit broad 

applications, particularly in combating 

antibiotic-resistant bacteria. By penetrating 

bacterial cell membranes, ZnO-NPs disrupt 

membrane integrity and reduce the 

transcription of genes associated with oxidative 

stress resistance. In the medical field, these 

nanoparticles are utilized in drug delivery, 

bioimaging, cancer therapy, and wound 

healing. Green synthesis of ZnO-NPs using 

natural resources offers an environmentally 

friendly and cost-effective approach. Key 

challenges in biosynthesis include 

heterogeneity in nanoparticle size and shape, 

toxicity arising from ROS and Zn²⁺ ions, 

environmental accumulation, and scalability 

issues in large-scale production. However, 

owing to their high biocompatibility and safety, 

ZnO-NPs are regarded as promising 

alternatives to antibiotics and are increasingly 

being explored for advanced industrial and 

biomedical applications.  
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  Optical biosensors have attracted the attention of researchers because they have a unique ability to control 

the dispersal of photons and detect the natural shape of biomolecules. The main component of blood is 

hemoglobin, whose main function is to transport oxygen to body tissues and remove carbon dioxide from them. 

This article aims to simulate biosensors that can detect hemoglobin concentration using photonic crystals. For 

this purpose, we have used two structures with TiN/m/Ti𝑂2 and AlXGa1-XN/𝑚/𝑇𝑖𝑂2.  The m layer is a dielectric 

such as glass or air, which has a different refractive index and can control light transmittance. Photonic 

crystals have a region called the photonic band gap (PBG), in which waves cannot propagate in the structure. 

layers inside the photonic crystal structure controlled and adjusted the defect modes and PBG properties. To 

find the best result, parameters such as the layer thickness, the light incident angle, and the refractive index 

have been optimally selected. After examining the proposed structures, it was determined that both structures 

are more optimal in a wide defect layer. The results show that the TiN/m/AlXGa1-XN structure has optimum 

sensitivity (S=780.0 nm/RIU), relative sensitivity (SR=0.729), and figure of merit (FOM=780.01/RIU) at a 

selected wavelength range.  
 

 

 

 

 

 

I. INTRODUCTION 

The peculiar features of the photonic crystal 

(PhC) structure are photonic band gaps and 

photon localization. The photonic band gap 

(PBG) is the frequency range where light of 

certain wavelengths cannot pass through the 

structure. These characteristics are the result of 

periodic modulation of dielectric functions, 

which significantly changes the spectrum of 

electromagnetic waves passing through it [1-3]. 

The photonic band gap in photonic crystals 

depends on the refractive index and thickness of 

the layers, the period of the photonic crystal, 

and the incident angle (and polarization) of 

light. PhC structures are the new technology for 

biosensor applications. Optical biosensors are 

considered analytical detectors that convert 

chemical, physical, or biological interactions 

into an optical signal. To use PhC as a 
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biosensor, it is crucial to change its structural 

arrangement to produce a resonant or defect 

mode in the transmission spectrum. The best 

way to form such a resonance mode is to create 

defects in the structure. Based on this, many 

optical devices such as optical filters, switchers, 

and photonic crystal fibers are produced [4-6]. 

PhC-based biosensors can detect biotoxins, 

veterinary drugs, microorganisms, pesticide 

residues, excessive additives, heavy metal 

compounds, and environmental pollutants [7-

13]. Hemoglobin (Hb) is the most vital 

component of blood, which is mainly 

responsible for transporting oxygen from the 

lungs to different body tissues and returning 

carbon dioxide from the tissues to the lungs. 

Any deviation in the blood hemoglobin 

concentration leads to fatal diseases, Such as 

polycythemia, anemia, diabetes, and thyroid 

dysfunction. Detection of blood hemoglobin 

concentration is one of the most serious and 

challenging concerns of medical scientists and 

researchers. The resonance slope in the 

spectrum and its change with hemoglobin 

concentration are the basis of our sensor design 

[7, 14, 15]. 

In recent years, further work has been done on 

a PhC for hemoglobin detection. El-Khozondar 

et al. developed a one-dimensional ternary PhC 

structure for hemoglobin measurement from 0 

g/L to 50 g/L concentration range, and the 

authors achieved a reported measurement of 

46/51 nm/RIU [16] A.K. Goyal et al. recently 

investigated a defective PhC based on the Bloch 

surface. By entering samples in defect regions 

with different concentrations, the authors 

calculated the angular shift and thus obtained a 

result of 69 deg./RIU. [17]. J. Hao and her team 

designed a superconductor-based, one-

dimensional PhC refractive index sensor to 

measure different concentrations of 

hemoglobin in human blood, with a sensitivity 

of 6.85 and 6.48 𝜇m/RIU at 80 K and 134 K  

[18]. Goyal et al. studied the reflectance of a 

one-dimensional PhC incorporating a porous 

defect layer for hemoglobin detection. The 

authors concluded the optimal sensitivity of 323 

nm/RIU and FOM of 517 1/RIU, respectively 

[19]. H.A. Elsayed et al. reported a one-

dimensional binary hemoglobin PhC sensor in 

which the authors used TMM to measure the 

shift in the resonance peak with respect to 

different hemoglobin concentrations and 

achieved a sensitivity of 167 nm/RIU [20]. 

Recently, K. M. Abohassan and his team have 

extensively investigated one-dimensional PhC 

structures by studying the reflection properties 

via TMM for various biosensing applications. 

[21-24]. 

In this work, we designed and simulated a 

highly sensitive biosensor structure based on 

1D-PhC with a defect layer. We calculate the 

transmission of polarized light (s) using the 

transmission matrix method (TMM) to measure 

the transmission of the mentioned structures 

and study the effect of some parameters to 

achieve the highest performance of the sensor 

configuration. The proposed sensor is efficient 

in measuring hemoglobin concentration. 

Various parameters such as figure of merit 

index (FOM), sensitivity (S), and full width at 

half maximum (FWHM) have been introduced 

to evaluate and compare the performance of 

biosensors. These parameters are numerically 

derived and are comparable with many of the 

reported values   of photonic crystal-based 

biosensors [25-30]. 

 

II. METHOD 

A schematic diagram of our proposed biosensor 

based on a one-dimensional defect PhC is 

shown in Fig. 1. 

 
Fig. 1 Schematic representation of biophotonic 

sensor structure 

In our design, the periodic structure consistsf 

three different dielectri terials abeled th 

thickness  d1, 𝑑𝑚, d2  and refractive index 

 n1, , nm  and n2  respectively. Ternary one-

dimensional structures have more exactly 

controlled photonic band gaps compared to 

binary structures. The N and D are the periodic 
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layer numbers and the defect layer with 

thickness 𝑑𝑙  and refractive index 𝑛𝑙 . The PhC 

structure is surrounded by a substrate (S) layer 

at one end and air at the other. The surrounding 

medium and PhC determine the physical and 

optical characteristics of the biosensor. The 

transfer matrix method can be used to analyze 

the reflectance or transmittance properties. 

According to Abel's theory, the periodic 

structure matrix of one layer, for example (a) 

layer, can be described by 𝐹(𝑎)  matrix, [31-

33]. 

𝐹(𝑎) = (
𝑔11 𝑔12

𝑔21 𝑔22
)                                          (1) 

Elements g11, g12, g21 and g22 represented by: 

𝑔11 = 𝑐𝑜𝑠 𝛿1 𝑐𝑜𝑠 𝛿2 −
𝑝2

𝑝1
 𝑠𝑖𝑛 𝛿1                    (2) 

𝑔12 =
−𝑖

𝑝1
𝑠𝑖𝑛 𝛿1 𝑐𝑜𝑠 𝛿2 −

𝑖

𝑝2
𝑐𝑜𝑠 𝛿1 𝑠𝑖𝑛 𝛿2   (3) 

𝑔21 = −𝑖𝑝1 𝑠𝑖𝑛 𝛿1 𝑐𝑜𝑠 𝛿2 −
𝑖𝑝2 𝑐𝑜𝑠 𝛿1 𝑠𝑖𝑛 𝛿2                                                 (4)  

𝑔22 = 𝑐𝑜𝑠 𝛿1 𝑐𝑜𝑠 𝛿2 −
𝑝1

𝑝2
 𝑠𝑖𝑛 𝛿1 𝑠𝑖𝑛 𝛿2        (5) 

That: 

𝛿1 =
2𝜋𝑑1

𝜆
𝑛1 𝑐𝑜𝑠 𝜃1 

𝛿2 =
2𝜋𝑑2

𝜆
𝑛2 𝑐𝑜𝑠 𝜃2                                         (6) 

𝑝1 = 𝑛1 𝑐𝑜𝑠 𝜃1 

𝑝2 = 𝑛2 𝑐𝑜𝑠 𝜃2                                                    (7) 

And for period N, the matrix is: 

𝐹(𝑁𝑎) = (
𝐹11 𝐹12

𝐹21 𝐹22
)                                      (8) 

𝐹11 = 𝑔11𝑢𝑁−1(Ѱ) − 𝑢𝑁−2(Ѱ)                      (9) 

𝐹12 = 𝑔12𝑢𝑁−1(Ѱ)                                         (10) 

𝐹21 = 𝑔21𝑢𝑁−1(Ѱ)                                         (11) 

𝐹22 = 𝑔22𝑢𝑁−1(Ѱ) − 𝑢𝑁−2(Ѱ)                   (12) 

Ѱ =
1

2
(𝑔11 +  𝑔22)                                         (13) 

𝑢𝑁(Ѱ) =
(𝑠𝑖𝑛(𝑁 + 1) 𝑐𝑜𝑠−1 Ѱ)

√1 − Ѱ2
                (14) 

In the next step, the defect matrix (D) was 

employed: 

𝐷(𝑑𝑑) = [
𝑐𝑜𝑠 𝛿𝑑

−𝑖

𝑝𝑑
𝑠𝑖𝑛 𝛿𝑑

−𝑖𝑝𝑑 𝑠𝑖𝑛 𝛿𝑑 𝑐𝑜𝑠 𝛿𝑑

]          (15) 

were: 

𝛿𝑑 =
2𝜋𝑑𝑑

𝜆
𝑛𝑑 𝑐𝑜𝑠 𝜃𝑑 

𝑝𝑑 = 𝑛𝑑 𝑐𝑜𝑠 𝜃𝑑                                                (16) 

The total characteristic matrix is the product of 

three matrices: 

𝑀(𝜔) = (𝑀𝑎𝑀𝑚𝑀𝑏)𝑁𝑀𝐷(𝑀𝑏𝑀𝑚𝑀𝑎)𝑁  

𝑀 = (
𝑀11 𝑀12

𝑀21 𝑀22
)                                         (17)  

Where the first one (Ma𝑀𝑚Mb)N describes the 

periodic structure on the left, and the last one 

(Mb𝑀𝑚Ma)N describes the periodic structure 

on the right, and between them, there is a defect 

layer matrix denoted by MD. From these three 

matrices, we obtain the entire characteristic 

matrix of the structure, which allows us to 

calculate the reflection and transition 

coefficient (r). 

𝑟 =
(𝑀11 + 𝑀12)𝑗0 − (𝑀21 +  𝑀22)

(𝑀11 + 𝑀12)𝑗0 + (𝑀21 +  𝑀22)
         (18) 

That: 

𝑗0 = √
𝜀0

𝜇0
𝑛0 𝑐𝑜𝑠 𝜃0                                         (19) 

Finally, reflectance and transmittance are 

represented by: 
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R= 𝑟2                                                                 (20) 

𝑇 = 𝑡2 = 1 − 𝑟2                                            (21) 

we have used glass as a substrate with refractive 

index  𝑛𝑠 = 1.524 . In a perfect, defect-free 

photonic crystal, it is observed a pure band gap, 

and when a defect is introduced, it leads to the 

localization of the defect states and a certain 

mode in the reflection spectrum is obtained. An 

example of the defect introduced is a 

hemoglobin solution. Different concentrations 

of the refractive index of hemoglobin solution 

depend on its concentration, and these changes 

are taken from a model function from reference 

[34]. The efficiency of the sensor is an 

important factor that determines sensitivity, 

which can be calculated from the following 

equation. 

S =
∆ λres

∆ n
                                                        (22) 

The FOM is obtained by considering the ratio 

of the S to the FWHM. 

𝐹𝑂𝑀 =
𝑆

FWHM
                                               (23) 

The quality factor is also calculated from the 

following formula: 

𝑄 =
𝑅𝐹

FWHM
                                                     (24) 

III. CONCLUSION  

A. Structure 1 

The first part aims to find the optimal state of 

the TiN/m/Ti 𝑂2  layer. We use an optical 

biosensor based on a one-dimensional photonic 

crystal to detect the hemoglobin concentration. 

In the first part, da(TiN)=100, db( 𝑇𝑖𝑂2) =
109 𝑎𝑛𝑑 𝑑𝑚 thicknesses are 0, 60 and100 nm, 

N=3, 5, 7, 9  and dl= 2, 5, 10 𝜇𝑚 were assumed 

for the number of ternary layers and the 

thickness of the defect layer, respectively.  TiN 

is a metal-semiconductor composed of 

Titanium and Nitrogen. This chemical 

compound is used as a resilient coating on the 

surfaces of sensors due to its favorable optical 

properties, mechanical strength, exclusive 

electronic properties, and structural robustness 

[35]. An obtained state will be optimal if the 

obtained mode has a higher height, a sharper 

width, and a band gap with maximum width. 

Below, we will check the results obtained for 

different N and 𝑑𝑚 to find the optimal state for 

these variables. To carry out this research, we 

consider 0.0001 accuracy in all three cases. [36-

38] The refractive index of hemoglobin was 

considered 1.380 and 1.365 in wavelength 

range 820 to 1300 nm [21, 39]. 

B. Results of structure 1  

 

Fig. 2 represents the intensity of transmitted 

light of TiN/m/Ti𝑂2 structure for a different 

number of periods N. 

 

 

Fig. 2 Optimizing the number of periods (N) 

concerning wavelength. a: The effect of the number 

of triple layers (N), b: The height and width of the 

peaks 



   

 

 
 

49 

IJBBE 
  International Journal of    

 Biophotonics & Biomedical Engineering                              Vol. 5 , No. 1, Spring-Summer, 2025 

The result of Fig. 2 and numerical calculations 

shows that the system has a good bandgap 

width, and N=5 is the optimum state. Because 

at this value, the optimal situation is that more 

height and sharper width, and a band gap with 

maximum width are possible. Fig. 3 shows the 

transmitted light intensity for different values of 

𝑑𝑙 =2 , 5 and 10 𝜇𝑚. 

  
Fig. 3 Transmitted light intensity for 𝑑𝑙 =2 , 5 and 

10 𝜇𝑚  

Figure. 3 shows that the number of modes 

increases and the intensity of some modes 

decreases with increasing defect layer 

thicknesses. Table 1 shows the numerical 

calculations for different values of 𝑑𝑙  for the 

refractive index of hemoglobin. The parameters 

RW and 𝑆𝑅 =
𝑆

𝑅𝑊
 are the wavelengths of the 

peak of the defect mode ( resonant wavelength) 

and relative or dimensionless sensitivity, 

respectively. 

Table 1 Numerical calculations for 𝑑𝑙  = 2  , 5 and 

10 𝜇𝑚 for hemoglobin (structure 1). 

FOM 

)1/RIU

( 
SR 

 S 

)𝑛𝑚 /RIU( 

 RW 

(𝑛𝑚)   
𝑑𝑙(𝜇𝑚) 

364.5 0.53 546.7 1087.0 2  

465.5 0.69 698.3 1051.0 5   

780.0 0.73 780.0 1091.0 10 

 

As it is clear that, 𝑑𝑙=10 𝜇𝑚 is optimal due to 

the appropriate peak size and considering other 

effective components (band gap, width, 

sensitivity, etc.). The table denotes that dl=10 

𝜇𝑚  has optimum sensitivity (S=780.0 

nm/RIU), relative sensitivity (SR=0.729) and 

figure of merit (FOM=780.01/RIU) at 

resonance wavelength RF=1091.0 nm 

respectively. Fig. 4 shows the results obtained 

with different light incident angles θ. 

According to the previous sections, here we 

also calculated the results numerically.  

 
Fig. 4 Transmitted light intensity for θ = 00 , 300 , 

600 degrees    

As the angle increases, the width of the modes 

increases, such that at an angle of 60 degrees, a 

small band gap with wide modes is produced. 

By examining these results, θ=0o is the most 

optimal possible mode. While the light incident 

is tuned to θ = 00, the structure has a vast band 

gap and narrow, sharp modes. It can be 

observed from Fig. 5 that minor changes in the 

refractive index of hemoglobin can 

appropriately shift the mode. 

 
Fig. 5 Mode shifts of biosensor in two different 

hemoglobin refractive indices (nl) 
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In this part of the work, the effect of the 

refractive index of the middle layer (nm) is 

investigated. For comparison, we considered 

the values of 1, 1.5, 2, and 2.5.  

 
Fig. 6 Transmitted light intensity for different 

refractive indices of the middle layer (nm)  

Figure. 6 shows that the glass layer (nm=1.5) is 

the most optimal possible state. On the other 

hand, the structure could be practically 

fabricated based on glass, and such a structure 

would be easier to access scientifically. In Fig. 

7, we considered the thicknesses of the middle 

layer values of 0, 60, and 120 nm. 

 

Fig. 7 The effect of thicknesses of the middle layer (dm)  

Our analysis shows that dm = 60 is the most 

optimal state. According to the obtained 

results, the important parameters such as the 

width of the band gap, FWHM, resonance 

wavelength, quality factor, sensitivity, and 

FOM are 466.8 nm, 2 nm, 1181 nm, 590.5, 

800 nm/RIU and 400, respectively.  

C. structure 2 

In this section, instead of layer a (TiN), in the 

first section, the AlXGa1-XN layer was replaced. 

Aluminum Gallium Nitride is a III-Nitride 

semiconductor. This process alters the chemical 

composition by changing the ratios of 

aluminum (Al), gallium (Ga), and nitrogen (N). 

This flexibility allows for the tuning of its 

optical and electronic properties. The visual 

characteristics of AlxGa1-xN semiconductor 

quantum dots can be altered by varying the 

composition percentages of Al and Ga. 

Introducing these quantum dots into the 

biosensor can allow for the modification of 

optical characteristics, thereby enhancing key 

biosensor features such as sensitivity, figure of 

merit, and quality factor. The obtained state 

(AlXGa1-XN/m/ 𝑇𝑖𝑂2) will be optimal if the 

obtained mode has a higher height, a sharper 

width, and a band gap with the maximum width 

[40-42].  

D. Results of structure 2  

The important parameters in this section that 

should be determined are the fraction of 

aluminum composition (x), and some important 

parameters were investigated in section B. First, 

we examined the changes of x for x=0, 0.4, 0.8, 

and 1. Fig. 8 shows that a band gap only in the 

case of x=1 is suitable and wider than other 

values, because the peak corresponding to this 

value is narrower and the mode is thinner.  
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Fig. 8 (a) Transmittance for different values of aluminum 

fraction (x). (b) Shifts of modes by changing the 

aluminum fraction x   

Figure. 9 shows the transmission spectrum of 

the biosensor concerning the thickness of the 

defect layer. In this structure, such as structure 

1, it is clear that dl=10μm is the suitable 

selection, as shown in Fig. 9: 

 
Fig. 9 Intensity of light passing through the biosensor 

according to the thickness of different defect layers  

Figure. 10 shows some optimized modes 

located at approximately 1055 and 1095 nm. 

These modes have appropriate intensity and 

FWHM for detection purposes. 

 
Fig. 10 Some optimized local modes in dl=10 µm. 

 

Fig. 11 The effect of thicknesses of the middle layer (dm)  

As can be deduced from Fig. 11, the 60 nm 

thickness is optimal for structure 2. Fig. 12 

shows the intensity of light passing through the 

biosensor according to the hemoglobin 

refractive index.  
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Fig. 12 the effect of thicknesses of the middle layer (dm)  

Table 2 shows the numerical calculations for 

different values of 𝑑𝑙 for the refractive index of 

hemoglobin. 

Table 2 Numerical calculations for 𝑑𝑙 = 2 , 5, 10 𝜇𝑚 

for hemoglobin (structure 2). 

FOM 

)1/RIU

( 
SR 

 S 

)𝑛𝑚 /RIU( 
 RF (𝑛𝑚)   𝑑𝑙(𝜇𝑚) 

300.0 0.55 600.0 1094.0 2  

183.3 0.64 733.3 1134.0 5   

400.0 0.70 800.0 1135.0 10 

 

Figure 13 shows the comparison of sensitivity 

and FOM values for different thicknesses of the 

two structures. 

 

Fig. 13 The comparison of sensitivity and FOM values 

for different thicknesses of two structures. 

The simulated biosensor exhibits sensitivity 

to refractive index variations of hemoglobin 

through apparent variations in the bandgap 

region, mode characteristics, and value of 

detection parameters. We have analyzed 

articles from various references to evaluate 

and compare the results obtained from the 

proposed structure.  Table 3 demonstrates the 

sensing performance parameters of our 

biosensor compared to those reported in 

previous studies in wavelength range (WR). 
 

Table 3. Assessing the sensitivity of the suggested 

sensor in comparison to other biosensing designs. 

 

REFEREN

CE  (  

FOM 

)1/RIU( 
S )𝑛𝑚 /RIU( WR) 𝑛𝑚) 

[16] - 46.51 800-1200 

[18] - 6480 2300-3100 

[17] 517 323 1630-1644 

[20] 0.63 167 590-650 

[7] 10916 1962 480-1800 

THIS 

WORK 
400 800 950-1300 

 

Discussions 

 

In this paper, we have established the 

theoretical studies of the ternary 1D-photonic 

crystal biosensor that enables enhanced 

sensitivity to small changes in the refractive 

index, to detect hemoglobin. Based on the 

presented findings, the proposed method has 

several advantages, including the ability to 

facilitate detection by increasing performance 

parameters, selecting optimal mode heights, 

and observing the effects of quantum dots, 

gallium nitride. Two similar structures were 

investigated, which, by using quantum dots 

instead of TiN layers, increased the sensitivity. 

Investigation shows that the photonic band gaps 

have sharp and suitable detection modes. This 

structure has suitable performance parameters 

such as Sensitivity, Figure of Merit, and 

Wavelength Ranges of 800 nm/RIU, 400, and 

950 -1350 nm, respectively. We distinguished 

two hemoglobin samples. These efforts will 

advance future research and enhance 

knowledge in this field. 
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      Autism is a neurological condition that influences brain function and behavior, often becoming evident in 

early childhood and lasting into adulthood. It is characterized by challenges in social interaction, 

communication, and behavior, as well as decreased attention to the surrounding environment. Early 

identification and diagnosis of autism can play a crucial role in addressing its impacts and enhancing social 

and communication abilities. Various tools, like questionnaires and neurological techniques, are used for this 

purpose. One such technique is electroencephalography (EEG), which records the brain's electrical activity 

through sensors positioned on the scalp. This paper presents a method for identifying autism using EEG data. 

The process starts by pinpointing active brain sources through localization techniques, followed by the 

application of a dual Kalman filter to assess their activity. Features are subsequently derived from EEG signals 

using multivariate autoregressive moving average (MVARMA) and multivariate integrated autoregressive 

(ARIMA) models. Principal component analysis (PCA) is employed to identify essential features, and a K-

nearest neighbor (KNN) classifier is utilized to classify individuals as either autistic or neurotypical. The 

proposed approach achieves higher accuracy and superior classification performance compared to existing 

methods, highlighting its effectiveness in identifying autism. 

 
 

 

 

 

 

 

I. INTRODUCTION 

Autism is an intricate neurodevelopmental 

condition with diverse manifestations and 

impacts. Individuals with autism often face 

challenges in expressing emotions, socializing, 

and adapting to new situations. Common signs 

include difficulty speaking, limited attention to 

surroundings, reduced emotional expression, 

and challenges in facially conveying feelings. 

These traits are particularly noticeable in 

children diagnosed with autism [1-3]. The 

condition typically emerges in early childhood 

or adolescence, with many adults on the autism 

spectrum also experiencing epilepsy or seizures 

at some point. This co-occurrence underscores 

the need for early diagnosis, comprehensive 
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care, and tailored interventions for individuals 

with autism [4-7]. Evidence indicates a rising 

prevalence of autism diagnoses. A 2009 study 

by the Centers for Disease Control and 

Prevention (CDC) highlighted a consistent 

increase in cases. In the United States, autism 

prevalence rose from fewer than 3 per 10,000 

children in the 1970s to over 30 per 10,000 by 

the 1990s. By 2012, the CDC revealed that 

autism was diagnosed in 1 out of every 88 

children, including 1 in 54 boys. This increase 

highlights the critical need for early detection 

and intervention to enhance outcomes for 

individuals with autism [3, 7]. 

Various diagnostic methods aim to detect 

autism spectrum disorder (ASD) early, 

ensuring timely support and care. Each 

approach has strengths and limitations. 

Behavioral observation, for instance, involves 

closely monitoring a child’s interactions, 

communication, and play. However, it is 

subject to observer bias and varying 

interpretations, leading to potential 

inconsistencies in diagnosis [8-10]. 

Standardized assessments such as the Autism 

Diagnostic Interview-Revised (ADI-R) and the 

Autism Diagnostic Observation Schedule 

(ADOS) have been developed to assess autism 

symptoms and severity[11, 12]. While these 

tools are valuable, reliance on self-reports or 

caregiver input can introduce biases and fail to 

capture the full range of behaviors. To 

overcome these challenges, researchers employ 

neuroimaging methods, such as functional 

magnetic resonance imaging (fMRI) and 

electroenc ephalography (EEG), to study brain 

function and connectivity in those with autism. 

These methods offer insights into the neural 

underpinnings of autism and may help identify 

biomarkers for diagnosis [12-15]. EEG, in 

particular, is a non-invasive and cost-effective 

method that captures the brain’s electrical 

function through scalp electrodes. It is 

especially useful for studying brain rhythms 

and connectivity patterns associated with 

autism[15, 16]. EEG’s ability to capture rapid 

changes in brain activity makes it an invaluable 

tool for identifying and understanding autism. 

By leveraging EEG data, researchers can 

facilitate early diagnosis, develop tailored 

interventions, and improve treatment outcomes. 

Identifying autism through EEG signals has 

become a key area of interest in neuroscience, 

with numerous studies investigating novel 

approaches. Many of these studies have applied 

machine learning algorithms to EEG data, 

resulting in impressive accuracy in 

differentiating individuals with autism from 

those without the condition. [17-23]. Advanced 

deep learning techniques have also been 

suggested to extract crucial features from EEG 

signals, demonstrating encouraging outcomes 

in the identification of autism [24-27]. For 

example, Schwartz et al. examined specific 

frequency bands of EEG, identifying unique 

patterns associated with autism [28, 29]. 

Innovative methods that merge EEG analysis 

with graph theory, pioneered by Jurriaan and 

Precenzano et al., offer new insights into autism 

detection [30]. Tawhid et al. applied time-

frequency analysis to reveal the dynamic 

patterns of the EEG associated with autism[31]. 

Additionally, Landowska integrated EEG with 

physiological data, such as heart rate and skin 

conductance, enhancing diagnostic 

accuracy[32]. Qaysar explored advanced signal 

processing methods such as wavelet transforms 

and independent component analysis, 

uncovering distinctive EEG patterns associated 

with autism [33]. Collectively, these methods 

highlight global efforts to enhance autism 

detection through EEG analysis, contributing to 

the development of more accurate diagnostic 

tools.  

Research has also highlighted unusual patterns 

of connectivity in the brains of people with 

autism. Studies indicate heightened local 

connectivity and diminished long-range 

connections in individuals with autism[34-39]. 

Wass et al. discovered enhanced connectivity in 

frontal and short-range neural pathways, 

whereas Coben et al. noted increased frontal 

coherence and reduced coherence in posterior 

temporal regions[36]. Granger causality 

analyses revealed weakened connectivity 

between distant brain areas, particularly in the 

prefrontal cortex, anterior cingulate, and 

inferior parietal regions[37]. Coben et al. 
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further confirmed this reduced connectivity 

during tasks involving emotional 

processing[40], Similarly, Minshew and 

Williams reported increased frontal coherence 

but diminished connectivity between anterior 

and posterior temporal regions in autism[41]. 

Using dynamic causal modeling on fMRI data, 

Wataru Sato et al. identified decreased activity 

in the visual regions of the brain in children 

with autism [42].  

This study introduces an innovative method that 

applies multivariate autoregressive moving 

average (MVARMA) and multivariate 

autoregressive integrated moving average 

(MVARIMA) models to detect autism. Key 

features are derived from the model parameters, 

highlighting the statistical properties of 

important ARMA and ARIMA parameters. The 

methodology begins with source localization to 

isolate active brain regions from EEG signals, 

then utilizes a dual Kalman filter to estimate the 

activities and interactions of these sources. 

EEG signals are mapped from sensor space to 

source space, where MVARMA and 

MVARIMA models are used to analyze these 

time series, incorporating past signal and source 

activity data. Assessing source dynamics, 

which represent temporal variations in brain 

activity, is a crucial and challenging step. 

Traditional methods like dynamic causal 

modeling (DCM) use linear or nonlinear 

frameworks for neural connections calculation, 

assuming nonlinear relationships between 

neural dynamics[43-45]. Moreover, dual 

Kalman filter methods are commonly employed 

to estimate dynamic source activity[46, 47]. 

Dual Kalman filter techniques are also 

employed for this purpose. For example, A.H. 

Omidvarnia employed dual Kalman filters on 

newborn EEG data[48], while Eduardo Giraldo 

introduced a comparable method for estimating 

source activity. Rajabioun et al. utilized a dual 

Kalman filter technique to investigate effective 

connectivity in EEG data from individuals with 

autism, revealing distinct differences between 

autistic and neurotypical subjects [47]. These 

advanced techniques demonstrate significant 

progress in analyzing brain dynamics and 

improving autism diagnosis through EEG. 

 

II.  MATERIALS AND METHODS 

 

 

This study proposes a technique for 

distinguishing individuals with autism from 

neurotypical participants. This classification is 

crucial for halting the disorder's progression 

and enhancing the quality of life for affected 

individuals. The detailed diagram of the method 

is illustrated in Figure 1. 

 

 

Fig. 1 The proposed method's flowchart is structured around features derived from MVAR parameters, with source 

activity as the input and EEG signals as the output time series. 

 

The first step involves acquiring or preparing 

EEG signals. The signal that are used in this 

paper was sourced from a publicly available 

dataset [49]. The dataset comprises EEG 

recordings obtained with the Biosemi 

ActiveTwo system from 28 participants 

diagnosed with autism spectrum conditions and 

28 neurotypical individuals, ranging in age 
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from 18 to 68 years. The data was collected 

during a 150-second resting state with eyes 

closed. Ethical approval for the study, including 

data collection and sharing, was provided by the 

Health Research Authority under IRAS ID 

212171[49]. 

After preprocessing, the filtered EEG signals 

undergo a source localization procedure to 

identify and estimate the active brain regions or 

sources. This step simplifies the complexity of 

the data by selecting a finite set of active 

sources and mapping their spatial coordinates. 

The objective of source localization is to 

minimize a specific function, ultimately 

pinpointing active brain regions. 

Raw EEG signals are preprocessed to remove 

noise and artifacts. This process begins with a 

bandpass Butterworth filter applied to restrict 

frequencies to the range of 0.5–100 Hz, 

reducing unwanted noise. Independent 

component analysis (ICA) is then performed to 

isolate components linked to brain activity. 

Non-brain-related components, such as those 

associated with eye blinks, electromyography 

(EMG), 50 Hz powerline interference, and 

auditory artifacts, are identified and removed, 

leaving a clean signal. For detailed 

methodologies on artifact removal and brain-

component identification, refer to [50-52]. 

𝐹 = ‖𝑉𝐾 − 𝐺𝐽𝐾‖ + 𝛼‖𝐽𝐾‖                       (1) 

where 𝑉𝐾(𝑚 × 1)  is the recorded signal 

recorded at the Kth sample, 𝐽𝐾(3𝑛 × 1) denotes 

the brain's source activity for the Kth sample and 

G(𝑚 × 3𝑛)  is the leadfield matrix, which is 

computed through forward problem-solving 

methods[53, 54]. This function is divided into 

two primary components: one accounts for 

error estimation, while the other manages noise 

reduction and smooths abrupt changes in source 

activities. The balance between these 

components is controlled by a parameter,  α, 

which is determined using algorithms such as 

Tikhonov regularization or the L-curve method 

[55]. 

Several strategies are available to minimize 

Equation 1, with one widely used method being 

sLORETA. This approach is particularly 

effective due to its ability to achieve zero 

localization error [55, 56]. In sLORETA, the 

explicit solution can be obtained using the 

given values of G and 𝑉𝐾: 

𝐽𝐾̂ = 𝑇. 𝑉𝐾                                                 (2) 

 

The approximated brain source activity, 

denoted as 𝐽𝐾̂(3𝑛 × 1), can be derived using 

the transformation matrix T(3𝑛 × 𝑚), which 

links the recorded EEG signals ( 𝑉𝐾 ) to the 

estimated source activities. In sLORETA, TT is 

calculated as follows: 

𝑇 = 𝐺𝑇𝐻[𝐻𝐺𝐺𝑇𝐻 + 𝛼𝐻]+                       (3) 

where [ ]+  denotes the pseudoinverse of the 

matrix, and HH is the regularization matrix 

used to ensure smoothness. HH is defined as: 

 

𝐻 = 𝐼 − 11𝑇/1𝑇1                                   (4)                                                     

In this equation, I denotes a unit matrix, and 1 

refers to a column vector of ones with 

dimensions (m×1). These components are 

essential for selecting active regions. The 

source activity estimation method (Eq. 2) is 

applied to time-varying EEG signals to detect 

active brain regions. For each sample, the 

estimation identifies specific sources as active. 

Regions with the highest probability of activity 

across samples are selected, representing areas 

of significant neural engagement. 

Once the active sources are identified, a model 

of linear variations is applied to capture their 

temporal dynamics. The model is expressed as: 

𝐽𝐾 = 𝐹𝐾𝐽𝐾−1 + 𝜂𝐾                                    (5) 

where 𝜂𝐾  represents state noise, and 𝐹𝐾  is the 

relationship matrix at the Kth sample, 

characterizing dependencies between active 

regions and their self-relation over time. The 

connection between these sources and the EEG 

signals is established through the leadfield 

matrix, which is calculated using forward 
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modeling techniques. This relationship can be 

summarized as follows: 

{
𝐽𝐾 = 𝐹𝐾𝐽𝐾−1 + 𝜂𝐾 

                                            
𝑉𝐾 = 𝐺𝐽𝐾 + 𝜀𝐾

                          (6) 

                                                                 

Where 𝜂𝐾  represents measurement noise. Both 

𝐽𝐾 (a source activity over time) and  

𝐹𝐾  (spatiotemporal relationship matrix) are 

estimated using a dual Kalman filter, as detailed 

in [57, 58]. After source activity (𝐽𝐾) changes 

calculation, a multivariate autoregressive 

moving average (ARMA) model is fitted to 

recorded signals. This model relates 𝑉𝐾  to its 

past values and the estimated source activity 

J, expressed as: 

 

𝑉𝐾 = ∑ 𝑎𝑖𝑉𝐾−𝑖
𝑝
𝑖=1 +  ∑ 𝑏𝑖𝐽𝐾−𝑖

𝑞
𝑖=0            (7)      

                             

where 𝑎𝑖, 𝑏𝑖  are parameter matrices, with 

𝑎𝑖 (m×p), and 𝑏𝑖  (n×(q+1)), corresponding to 

the dimensions of V (m) and J (n). 

To address the nonstationary nature of EEG 

signals, an autoregressive integrated moving 

average (ARIMA) model is also utilized. The 

ARIMA(p,d,q) model is defined as: 

 

𝑉𝐾 = ∑ 𝑎𝑖𝑉𝐾−𝑖
𝑝
𝑖=1 +  ∑ 𝑏𝑖𝐽𝐾−𝑖

𝑞
𝑖=0 +

∑ 𝑐𝑖`(1 − 𝑍)𝑑𝑌𝑖
𝑑
𝑖=1                                   (8)  

              

Here, Z is the delay operator, and the difference 

operator is defined as: 

(1 − 𝑍)𝑌𝑖 = 𝑌𝑖 − 𝑌𝑖−1 

(1 − 𝑍)2𝑌𝑖 = 𝑌𝑖 − 2𝑌𝑖−1

+ 𝑌𝑖−2                                           
                                                                  (9)  

… 

 

These models provide a robust framework for 

analyzing EEG data by leveraging both 

stationary and nonstationary signal 

characteristics, enabling more accurate 

assessments of brain dynamics. 

In this part of the discussion, the activities from 

the sources act as the model's input, whereas the 

resultant EEG signals represent the output. The 

objective is to model each EEG sample by 

utilizing its delayed versions and the associated 

source activities. To accomplish this, matrices 

associated with the ARMA and ARIMA 

models—referred to as ‘a’, ‘b’, and ‘c’—are 

calculated for every sample. The dimensions of 

these matrices are determined by the respective 

orders of the models. 

Next, various characteristics are derived from 

these model parameters to assist with 

classification. To simplify the process, the 

parameters are divided into two distinct classes, 

with features extracted from each: 

•  Class 1: Parameters with low variability, 

indicated by a standard deviation of less than 

20% of the average value. The mean values of 

these parameters are utilized to form the feature 

vectors. 

•  Class 2: Parameters that display a higher 

degree of variability compared to those in Class 

1. For this class, the following statistical 

metrics are selected for the feature vector: 

• Average signal value 

• Standard deviation of the signal 

• Signal kurtosis 

• Signal skewness 

• Signal entropy 

Subsequently, horizontal and natural visibility 

graphs are created from each time series array, 

and several features are then extracted from 

them. Further details on visibility graphs can be 

found in [60, 62, 63]. Key features include: 

• Average value of the graph nodes 
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• Standard deviation of the graph nodes 

• Mean length of the shortest path from each 

node to all other nodes 

After constructing the feature vectors, 

dimensionality reduction techniques are 

employed to reduce complexity and enhance 

classification accuracy. PCA, or principle 

component analysis, is employed as an 

effective method for reducing the 

dimensionality of the feature vectors. PCA 

converts a collection of potentially interrelated, 

high-dimensional features into a new set of 

independent variables, referred to as principal 

components. This process preserves the most 

important information from the original 

features while minimizing their dimensionality. 

PCA begins with the normalization of each 

feature, centering it by subtracting its mean. 

Next, a correlation matrix is created from these 

normalized features, followed by the 

computation of eigenvalues. The eigenvectors 

associated with the largest eigenvalues are then 

chosen to form a transformation matrix. This 

matrix transforms the original feature vector 

into a lower-dimensional space, effectively 

reducing its dimensions while retaining 

essential information. 

Finally, a Support Vector Machine (SVM) is 

employed to classify and distinguish depressive 

subjects from normal individuals. SVM is 

chosen for its excellent performance in 

classifying high-dimensional feature spaces. It 

works by finding a hyperplane that maximizes 

the margin between classes, focusing on the 

nearest data points known as support vectors. 

While this is a brief overview, more detailed 

information on SVM mechanisms and 

optimization techniques can be found in the 

relevant literature. SVM is a widely used 

classifier, renowned for its robustness in 

managing complex classification tasks. 

III. SIMULATION AND RESULTS 

 

This part describes the application of the 

suggested approach to EEG data obtained from 

both individuals with autism and neurotypical 

participants. The procedure involved multiple 

stages, starting with the retrieval and recording 

of EEG signals from a reliable source. Next, the 

signals underwent preprocessing, which 

included the application of a bandpass filter 

designed to retain frequencies within the range 

of 0.5 to 30 Hz. Following this, ICA is applied 

to the signals to extract independent 

components, aiming to remove those unrelated 

to brain function, like blinking, EMG or ECG 

interference, 50Hz noise, and auditory brain 

responses. Detailed descriptions of the methods 

used to identify and remove these artifacts can 

be found in [50-52]. After preprocessing, the 

signals were processed using 

sLORETA(standardized low-resolution 

electromagnetic tomography) to extract the 

underlying brain sources with zero localization 

error [55, 56]. The regularization parameter for 

sLORETA was established through the use of 

the Tikhonov regularization technique [54]. 

Afterward, active sources were identified 

during the EEG recording process, and the most 

significant ones were selected based on their 

overall performance throughout the dataset. 

The number of EEG channels determined the 

selection of sources, after which a multivariate 

autoregressive (MVAR) model was applied to 

examine the identified active sources. This 

process led to the development of a state-space 

model that captures the interactions between the 

EEG channels and these sources. A dual 

Kalman filter was employed to simultaneously 

estimate dynamic source activity and compute 

the relationship matrix. Additionally, an 

autoregressive moving average (ARMA) or 

autoregressive integrated moving average 

(ARIMA) model was utilized to establish a 

connection between the source activity as input 

and the EEG channel recordings as output. 

Following this, statistical and graph-based 

features were extracted from the parameters 

estimated by the ARMA or ARIMA model. 

Principal Component Analysis (PCA) was then 

applied to reduce the dimensionality of these 

features, compressing the feature vector to 15 

components. In the final step, a Support Vector 

Machine (SVM) was trained using the reduced 

feature set, allowing for classification based on 

the SVM model. To assess the classification 

performance, multiple simulations were carried 

out to examine the impact of different 
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parameter variations. Additionally, various 

performance metrics were defined to validate 

the classification outcomes. 

𝐴𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                        

(Eq. 10) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               

(Eq. 11) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                            (12)                                  

 

Firstly, the classification was conducted by 

altering the ARMA model’s order. Different 

orders of models were tested for both the 

ARMA and ARIMA models (as described in 

Equation 7), and the results for each 

configuration are presented in Table 1. 

 

Table 1. The proposed method evaluated the accuracy, sensitivity, and specificity of EEG classification between autistic 

and control groups, utilizing different orders of the ARMA and ARIMA models. 

 ARMA(2,2) ARMA(4,2) ARMA(4,3) ARMA(5,4) ARMA(6,5) 

Accuracy 0.9107 0.9286 0.9464 0.9821 0.9464 

Sensitivity 0.9286 0.9643 0.9643 1 0.9643 

Specificity 0.8929 0.8929 0.9286 0.9643 0.9286 

 ARIMA(2,1,2) ARIMA(4,2,2) ARIMA(4,2,3) ARIMA(4,3,4) ARIMA(6,4,5) 

Accuracy 0.9286 0.9821 0.9821 1 0.9464 

Sensitivity 0.9643 0.9643 1 1 0.9643 

Specificity 0.9286 0.9286 0.9643 1 0.9286 

The data presented in Table 1 show that the 

ARMA(5,4) model exceeds the performance of 

all other models. Previous research has 

suggested several methods for determining 

model order, one of which is the Akaike 

Information Criterion (AIC) approach[59, 60]. 

By applying this method, the optimal ARMA 

model order was identified as ARMA(5,5), 

which closely resembles the ARMA(5,4) model 

that demonstrated superior performance in this 

study. For the ARIMA model, both 

ARIMA(4,2,3) and ARIMA(4,3,4) provided 

superior results compared to the other 

configurations. This indicates that the ARIMA 

model delivers more accurate results than the 

ARMA model when using the same order, 

highlighting its advantage in handling 

nonstationary signals due to the inclusion of 

differencing operations. 

In the second simulation, the effect of two 

feature types is analyzed. First, classification is 

performed using only statistical features, 

followed by classification using features 

extracted from visibility graphs. Next, 

classification is performed by combining both 

statistical and visibility graph features. Figure 2 

displays the classification accuracies for the 

models ARMA(4,3), ARMA(5,4), 

ARIMA(4,2,3), and ARIMA(4,3,4). 
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Fig. 2  The classification accuracy using the proposed method is evaluated based on different feature sets (statistical, 

visibility graph, and a combination of both). The classification is performed using various models, including 

ARMA(4,3), ARMA(5,4), ARIMA(4,2,3), and ARIMA(4,3,4). 

In the second simulation, classifiers that were 

trained with features derived from visibility 

graphs showed higher accuracy compared to 

those trained solely with statistical features. 

This enhancement can be credited to the 

additional structural information captured by 

visibility graphs. As seen in Figure 2, the 

ARIMA(4,3,4) model outperforms other 

models, such as ARMA(4,3), ARMA(5,4), and 

ARIMA(4,2,3), highlighting its ability to better 

capture the inherent patterns and dynamics 

within the data, resulting in improved 

classification accuracy. 

In the third simulation, the impact of decreasing 

the feature count through PCA is explored. 

While the previous simulations reduced the 

feature set to 15, this simulation evaluates 

various feature set sizes (5, 10, 15, 20, 30, and 

50) and examines the corresponding 

classification accuracy and simulation time. 

Table 2 presents the results of this simulation, 

which was conducted using the ARMA(5,4) 

and ARIMA(4,3,4) models. 

Table 2. The results show the accuracy and simulation time of the proposed method with different numbers of features 

reduced by PCA, using the ARMA(5,4) and ARIMA(4,3,4) models. 

 5 10 15 20 30 50 

Accuracy 

(ARMA(5,4)) 

0.8929 0.9464 0.9821 0.9821 1 1 

Simulation time 

(ARMA(5,4)) 

In sec 

762 983 1463 2873 3182 8982 

Accuracy 

(ARMA(5,4)) 

0.9286 0.9821 1 1 1 1 

Simulation time 

(ARIMA(4,3,4)) 

In sec 

1282 1676 3593 4282 7083 10012 
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The findings in Table 2 indicate that a larger 

feature set for SVM training enhances accuracy 

but also extends the simulation time, 

highlighting an increased computational 

burden. Notably, after selecting 15 features, 

further increases in the number of features do 

not yield significant improvements in accuracy, 

though the computational cost keeps 

increasing. Thus, it is recommended to 

strategically determine the reduced feature 

count through PCA, with 15 features providing 

an optimal balance between computational 

efficiency and accuracy.  

Lastly, the performance of the proposed method 

was compared to other methods used for 

recognizing autistic individuals. The proposed 

method, along with approaches from previous 

studies, was tested on the same dataset, and 

their classification accuracies are shown in 

Table 3. 

 

Table 3. Comparison of Classification Accuracy for Autism Recognition Using Various Methods from Previous 
Studies 

 Method 

No.1(48)  

Method No.2 

(20) 

Method 

No.3(24) 

Method 

No.4 (32) 

Proposed 

method 

ARMA(5,4) 

Proposed 

method 

ARIMA(4,3,4) 

Accuracy 0.8929 0.9464 0.9464 0.9643 0.9821 1 

 

The results from Table 3 show that the method 

which are proposed by this paper outperforms 

other methods in terms of classification 

accuracy. Specifically, using ARIMA(4,3,4) 

improves the classification performance. 

However, it is essential to recognize that this 

method demands more computational time than 

the ARMA(5,4) approach. ARMA models are 

typically favored when minimizing simulation 

time is a priority. 

IV. DISCUSSION 

This research introduces an innovative 

approach to identifying individuals with autism 

by utilizing EEG signals and features extracted 

from multivariate autoregressive moving 

average (MVARMA) and multivariate 

integrated autoregressive (ARIMA) models. 

The approach consists of multiple essential 

steps, including source localization, source 

activity estimation using a dual Kalman filter, 

and parameter computation through 

MVARMA and ARIMA models. PCA is 

employed to identify key parameters, followed 

by classification using a K-nearest neighbor 

(KNN) classifier. The findings highlight 

improved classification accuracy over other 

methods, underscoring the effectiveness of this 

approach. The main objective is to use EEG 

signals to differentiate autistic participants from 

neurotypical individuals by estimating source 

activities and capturing the altered dynamics 

and connectivity between brain sources linked 

to autism. 

To evaluate the effectiveness of the method, a 

series of simulations was performed to examine 

the effects of various parameter adjustments. 

The results presented in Table 1 demonstrate 

that the ARMA(5,4) and ARIMA(4,3,4) 

models performed better than other 

configurations, with the Akaike method 

suggesting that the ARMA(5,5) model is 

comparable to the superior ARMA(5,4) model. 

In the case of the ARIMA model, both 

ARIMA(4,2,3) and ARIMA(4,3,4) showed 

improved performance, emphasizing the 

benefit of ARIMA in handling nonstationary 

signals through its differencing process. 

Additional simulations examined the effect of 

various features on classification accuracy, 

revealing that features derived from high 

visibility graphs (HVG) and non-visible graphs 

(NVG) play a crucial role in enhancing the 

results. Combining these graph-based features 

with statistical features led to better 
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performance. As numerous features increased 

computational load, PCA was used for feature 

dimensionality reduction. The findings 

suggested that reducing features improves 

accuracy but increases computation time, 

necessitating an optimal trade-off between 

computational efficiency and accuracy.  

Finally, the method's performance was 

compared with other approaches, 

demonstrating that ARIMA(4,3,4) offers 

superior results. In conclusion, this research 

introduces a robust approach for identifying 

autism using EEG signals and features 

extracted from MVARMA/ARIMA models. 

The approach shows promise for gaining deeper 

insights into brain dynamics and connectivity 

associated with autism, through analysis of 

parameter variations and feature selection.  

V. CONCLUSION 

This study addresses autism spectrum disorder, 

a multifaceted condition impacting people 

across their lifespan, characterized by unique 

patterns of interaction, behavior, and 

communication, coupled with limited attention 

to external stimuli. Early detection is essential 

for intervention and enhancing interpersonal 

and communicative abilities. There are several 

techniques available for identifying autism, 

with one being EEG (electroencephalogram), 

which monitors electrical brain activity through 

sensors placed on the scalp. EEG signals offer 

valuable insights into brain activity, helping to 

explore the neurological processes associated 

with autism. Our approach estimates the 

activity of brain sources and analyzes the 

connectivity between regions to uncover 

patterns and dynamics unique to autism. 

We present a method that leverages EEG 

signals and features extracted from MVARMA 

(Multivariate Autoregressive Moving Average) 

and ARIMA (Autoregressive Integrated 

Moving Average) models for autism 

classification. These models effectively capture 

dependencies in the data, statistical traits, and 

the nonstationarity often observed in brain 

activity associated with autism. Our method 

outperforms existing alternatives by accurately 

distinguishing autistic individuals from 

neurotypical participants. The method involves 

several essential stages: preprocessing the 

signals, localizing sources, modeling, 

extracting features, and performing 

classification. Through simulations and 

adjustments to parameters, we determine the 

ideal model configurations and features that 

optimize classification performance.  

The study emphasizes the significance of 

comprehending brain source dynamics and 

connectivity in relation to autism. By analyzing 

recorded signals and applying MVARMA and 

ARIMA models, the study uncovers brain 

activity patterns in individuals with autism. 

PCA is used for feature reduction, which 

enhances computational efficiency while 

preserving accuracy. Selecting between 

ARIMA and ARMA models requires a trade-

off between accuracy and simulation duration, 

with ARMA models being better suited for 

quicker simulations.  

In summary, this research introduces a 

powerful approach for accurate autism 

identification through EEG data, which can 

support early diagnosis and therapeutic 

measures. Future studies involving larger and 

more varied datasets will strengthen the 

method's reliability and broaden its 

applicability. Investigating the method's 

applicability to various demographic groups 

and age ranges is crucial. Advances in EEG 

technology offer the potential to enhance 

autism detection, paving the way for tailored 

interventions and improved outcomes for those 

affected by the condition. 
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     Background and Objective: Bilirubin, a yellow pigment, is a key biomarker for diagnosing and monitoring 

neonatal jaundice. Neonatal jaundice, caused by elevated blood bilirubin levels, can lead to severe 

complications if not detected and treated in time. Traditional methods for bilirubin measurement, although 

accurate, are invasive and require laboratory equipment, causing discomfort for the infant and increasing 

costs. This study presents the design and evaluation of a portable photometer for accurate non-invasive 

bilirubin measurement. 

 

Methods: 

The proposed device utilizes blue light at a wavelength of 470 nm to determine bilirubin concentration based 

on reflected light from simulated skin surfaces. The system incorporates multiple optical filters and advanced 

calibration algorithms to minimize errors caused by environmental and physical factors such as ambient light, 

temperature, and skin tone variations. 

 

Results: 

Experimental tests on skin phantoms with various bilirubin concentrations demonstrated the device's high 

accuracy in measuring bilirubin across a range of conditions, including light, medium, and dark skin tones. 

 

Conclusion: 

The results indicate that portable photometers can serve as rapid, accurate, and user-friendly tools in clinical 

and medical settings, particularly in environments with limited access to laboratory facilities. 
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I. INTRODUCTION 

Bilirubin is a yellow pigment generated during 

the breakdown of hemoglobin. Elevated levels 

of this pigment in the blood lead to jaundice, a 

common physiological condition particularly 

prevalent in newborns [1, 2]. It is observed in 

approximately 60% of full-term and up to 80% 

of preterm neonates and is primarily due to 

accelerated hemoglobin turnover and the 

temporary immaturity of the liver’s bilirubin 

clearance mechanism. If not diagnosed and 

treated promptly, neonatal jaundice may result 

in irreversible neurological complications [3]. 

The conventional method for diagnosing 

jaundice is based on measuring the total serum 

bilirubin (TSB) through blood sampling. 

Although this method provides high accuracy, 

it is invasive and may cause discomfort or even 

anemia in newborns [4, 5]. Furthermore, it 

requires laboratory equipment and is both time-

consuming and expensive. As a result, non-

invasive techniques such as transcutaneous 

bilirubinometry (TcB) have been developed in 

recent years as effective alternatives to blood-

based methods [6, 7]. 

Photometry is one such non-invasive method 

for estimating bilirubin concentration based on 

its selective absorption of light at specific 

wavelengths, particularly in the blue spectrum. 

 Photometric devices illuminate the skin and 

analyze the reflected light using calibration 

algorithms to estimate bilirubin concentration 

[8–10]. Bilirubin exhibits a distinct absorption 

peak in the 450–490 nm range [11, 12], which 

enables the design of simple and cost-effective 

optical diagnostic tools. Fig. 1 illustrates the 

absorption spectra of various tissue 

components, including hemoglobin, melanin, 

water, and bilirubin [13, 19]. 

In this study, a portable photometric device was 

designed and evaluated to provide a simple, 

rapid, and cost-effective solution for the initial 

screening of neonatal jaundice. This research is 

categorized as applied and is intended for use in 

clinical settings with limited access to 

laboratory infrastructure. 

 

Fig. 1 Representative Absorption Spectra of Blood Constituents [13, 19] 

Transcutaneous bilirubin measurement has 

emerged as a simple and non-invasive 

alternative to traditional invasive methods. By 

eliminating the need for blood sampling, it 

enables early screening and facilitates timely 

diagnosis and treatment   [10.]  
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In recent years, numerous studies have focused 

on the development and enhancement of 

photometric devices for neonatal jaundice 

detection. These devices leverage modern 

optical technologies to deliver reliable and 

consistent non-invasive bilirubin measurements 

[11–14]. Techniques such as diffuse reflectance 

spectroscopy (DRS) analyze light reflected 

from the skin to estimate bilirubin 

concentration, even in turbid samples [11]. 

Furthermore, photon diffusion theory-based 

models have improved the accuracy of TcB 

methods by simulating light propagation in 

neonatal skin  [12.]  

The design of portable, handheld systems 

capable of simultaneously measuring bilirubin 

and hemoglobin represents a major step toward 

the clinical translation of such technologies. 

These devices enhance accessibility and enable 

rapid monitoring in both hospital and home 

settings  [13.]  

Comparative studies between TcB and the gold 

standard TSB have shown that optical methods 

exhibit acceptable accuracy and strong 

correlation with serum values, making them 

reliable tools for initial screening and treatment 

monitoring [14]. Moreover, computational and 

machine learning models have been employed 

to analyze neonatal data for the prediction of 

jaundice severity and therapy planning   [15  ,16.]  

Various phototherapy systems have also been 

developed using different illumination 

techniques, including photometry and 

spectrophotometry, to reduce serum bilirubin 

levels in affected neonates [17]. These 

innovations highlight the increasing potential of 

optical technologies in both diagnosis and 

treatment. 

Given the limitations of traditional methods and 

the advantages of photometric approaches, 

developing portable and efficient devices for 

transcutaneous bilirubin estimation is a 

promising direction in neonatal care. In this 

study, we present the design and evaluation of 

a portable photometric device aimed at 

providing an accurate, rapid, and user-friendly 

solution for neonatal jaundice screening and 

follow-up. 

 

II. MATERIALS AND METHODS 

 

A. Preparation of Skin-Mimicking 

Phantoms  

To evaluate the accuracy of the bilirubin 

measurement device under laboratory-

simulated conditions, gelatin-based optical 

phantoms were fabricated to mimic the optical 

properties of human skin. These phantoms 

replicate light absorption and scattering 

behavior in tissue, allowing controlled 

assessment of the device’s response to various 

bilirubin concentrations. The phantom 

fabrication method was adapted based on 

previous studies on optical simulation of 

neonatal skin [11, 13]. To simulate bilirubin 

absorption, food-grade dyes with a similar 

spectral profile were used. This approach offers 

cost-effectiveness, reproducibility, and 

standardization across measurements. The 

phantoms were prepared in three categories: 

(a) Control Samples: 

To produce phantoms with controlled bilirubin 

concentrations, a 2% (w/v) gelatin solution was 

prepared by gradually dissolving gelatin 

powder into deionized water. The mixture was 

heated to 60°C and stirred using a magnetic 

stirrer to ensure homogeneity. Standard dye 

solutions with concentrations of 0.25, 0.3, and 

0.5 mg/dL were prepared by adding 5, 7, and 10 

µL of dye, respectively, to the gelatin base. 

After thorough mixing, the solutions were 

poured into sterile containers and allowed to 

solidify at room temperature. 

(b) High-Concentration Samples: 

To assess device performance at higher 

bilirubin levels, more concentrated dye 

solutions were used. Volumes of 100, 150, and 

200 µL of concentrated dye were added to 2% 

gelatin to achieve final concentrations of 2, 3, 

and 4 mg/dL, respectively. The mixtures were 
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homogenized using a magnetic stirrer, poured 

into transparent molds, and left to set at room 

temperature for two hours until gel formation 

occurred (Fig. 2). 

(c) Dark Skin Model Samples 

To simulate the optical properties of dark skin 

tones more accurately, a coffee solution was 

used as a background light absorber. A solution 

with a concentration of 250 mg/dL was 

prepared and added to the gelatin mixture as a 

melanin-mimicking agent. Food-grade dye 

solutions with varying concentrations (as 

described in previous sections) were added to 

the coffee-infused phantoms. 

To ensure uniform distribution of both the dye 

and the coffee particles, the mixtures were 

treated in an ultrasonic bath for 5 minutes. The 

final solutions were poured into sterile molds 

and allowed to solidify at room temperature, 

forming stable gel-based phantoms (Fig. 3). 

 

Fig. 2 Phantoms with Different Bilirubin 

Concentrations. (a) 0.25, (b) 0.3, (c) 0.5, (d) 2, (e) 3, 

and (f) 4 mg/dL 

 

Fig. 3 Coffee-Infused Phantoms with Varying 

Bilirubin Concentrations. (a) 0.25, (b) 0.3, (c) 0.5, (d) 

2, (e) 3, and (f) 4 mg/dL 

B. System Design 

In the proposed device, a constant current 

power supply was used to drive the LEDs, 

minimizing intensity fluctuations and ensuring 

stable illumination. The light emitted from the 

LEDs is focused using a set of precision lenses 

and directed onto the surface of the skin or 

phantom. The optical system is carefully 

designed to optimize beam direction and 

intensity while minimizing optical losses.  

The lenses used are coated with anti-reflective 

material to enhance transmission efficiency. 

The emitted blue light interacts with bilirubin 

molecules within the skin tissue, and part of it 

is absorbed. The reflected or transmitted 

portion of the light is collected and directed 

toward an optical sensor. 

This reflected signal contains spectral 

information about bilirubin concentration in the 

superficial skin layers, which is then analyzed 

by the system for estimation and display.  

To ensure accurate measurement of reflected 

light intensity, a TSL2561 digital light sensor 

was employed. This sensor offers significant 

noise reduction as light intensity increases and 

provides a digital output directly to the 

microcontroller, eliminating the need for 

analog-to-digital conversion. To minimize 

external influences—such as light angle, 

device-to-skin distance, and applied pressure—

a mechanical enclosure was designed with 
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precise dimensions. A fixed distance of 1.25 cm 

between the sensor and the skin surface was 

maintained to ensure measurement consistency. 

Additionally, the device was fitted with a light-

blocking shield to prevent interference from 

ambient illumination. Fig. 4 illustrates the 

precise mechanical design used to maintain a 

fixed distance between the sensor and the skin. 

This structure helps reduce measurement errors 

caused by variations in light angle and distance. 

The electronic control unit is based on an 

Arduino Mega 2560 board utilizing an 

ATmega2560 microcontroller from AVR. This 

board supports both I2C and SPI 

communication protocols. The I2C protocol 

was used to interface with the light sensor, 

while SPI was utilized for communication with 

the display module. 

The microcontroller processes the incoming 

digital signals, applies noise filtering 

algorithms, and computes the estimated 

bilirubin concentration. To enhance accuracy, 

multiple consecutive readings under identical 

conditions were taken, and the average signal 

was calculated. The device was calibrated using 

standard bilirubin solutions at various 

concentrations, simulating real clinical levels. 

The processed results are displayed numerically 

on the device screen. 

To facilitate portability and usability in clinical 

environments, the system is powered by a 

rechargeable lithium battery, which supports 

approximately 1,800 tests per full charge. 

 

Fig. 4 Custom-Designed Mechanical Fixture for 

Sensor and LED Placement 

III. DISCUSSION 

The engineering design of the device aimed to 

deliver a compact, reliable, and clinically viable 

solution, with final dimensions of 12 × 8 cm and 

a weight of 800 grams. Fig. 5 shows the final 

physical configuration of the fabricated device. 

During the design process, several critical 

factors were considered, including ease of use, 

portability, reliability across various ambient 

lighting and temperature conditions, and 

mechanical robustness. Ultimately, an 

optimized structural configuration was 

proposed to meet clinical and operational needs 

for use in real-world medical environments. 

 

Fig. 5 Physical Structure of the Device 

A. Bilirubin Estimation  

To estimate bilirubin concentration in tissue, 

the Beer–Lambert law was applied—an 

essential principle in spectrophotometry that 
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describes the linear relationship between light 

absorbance, the concentration of an absorbing 

substance, and the optical path length. 

This relationship is mathematically expressed 

as Eq. 1. 

𝐼(λ) = 𝐼0(λ)𝐹. 10
−𝐾                                (1) 

where 𝐼₀(𝜆) is the intensity of the incident light 

at the wavelength 𝜆, 𝐼(𝜆) is the reflected light 

intensity measured by the sensor, 𝐾  is the 

absorption coefficient and 𝐹 is the attenuation 

factor that reflects light absorption and 

scattering within the tissue and depends on 

bilirubin concentration [19]. 

Equation 2 relates the absorption coefficient to 

the concentration of the absorbing substance 

(𝐶), its molar absorptivity (𝜖), and the optical 

path length through the tissue ( 𝐿 ). This 

fundamental relationship forms the basis for 

spectroscopic analysis in biological tissues. 

𝐾 = 𝜖𝐶𝐿                                                       (2) 

 

In this study, reflectance measurements were 

taken at three different wavelengths to enhance 

estimation accuracy. Multi-wavelength 

analysis allows compensation for spectral 

interference caused by other chromophores 

present in the skin, such as hemoglobin and 

melanin, thereby improving specificity for 

bilirubin detection. 

According to Fig. 1, oxyhemoglobin and 

bilirubin exhibit similar absorption behavior at 

a wavelength of 470 nm (blue light). However, 

bilirubin absorbs significantly less light at 530 

nm (green light). By measuring light 

absorbance at both wavelengths and calculating 

their difference, the influence of 

oxyhemoglobin can be minimized, allowing for 

a more accurate estimation of bilirubin 

concentration [9]. 

Another major factor affecting light absorption 

at 470 nm is melanin, the primary skin pigment. 

Melanin exhibits relatively uniform absorption 

across a broad spectrum of wavelengths, 

particularly between 450 and 700 nm. To 

reduce melanin’s effect on bilirubin 

measurement, absorption at 450 nm and 630 nm 

(red light) can be analyzed and computationally 

corrected. 

As a result, utilizing three distinct wavelengths 

enables the attenuation of interference from 

both hemoglobin and melanin, thereby 

enhancing measurement accuracy and 

specificity. 

In this study, the above principles were applied 

to analyze reflectance data from skin-

mimicking phantoms at multiple wavelengths. 

Bilirubin concentrations were calculated using 

this approach, which yielded improved 

precision and repeatability compared to 

traditional single-wavelength methods. The 

proposed technique demonstrates potential as a 

reliable and non-invasive method for bilirubin 

quantification in biological tissues. 

B. Phantoms with Varying Bilirubin 

Concentrations 

In both phantom groups (with and without 

coffee), bilirubin concentration was adjusted at 

six different levels: 0.25, 0.3, 0.5, 2, 3, and 4 

mg/dL. This concentration range was selected 

to cover clinically relevant values and to 

evaluate the device's accuracy across different 

bilirubin levels. 

For each phantom sample, reflectance 

measurements were taken at three distinct 

surface locations, and three consecutive 

readings were recorded per location. As a 

result, a total of 9 reflectance values were 

obtained for each bilirubin concentration, 

providing sufficient data for statistical analysis 

(Fig. 6). 
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Fig. 6 Device Testing on Phantom Samples 

Following data acquisition, the reflectance 

spectra for each sample were linearly matched 

against standard reference spectra of 

chromophores present in the phantom 

composition (including food dye, coffee, 

gelatin, and water). This spectral fitting enabled 

the identification of absorption contributions 

from each component. Subsequently, the Beer–

Lambert law was applied to estimate the 

concentration of each chromophore, yielding 

high accuracy in bilirubin quantification. 

The detailed measurement results are presented 

in Tables 1 and 2. In these Tables, “Error” 

shows the signed difference (±) between 

measured and actual values, and “Absolute 

Error (%)” is the absolute percentage error.  

The Pearson correlation coefficient (r), which 

quantifies the strength and direction of a linear 

relationship between two variables, was 

calculated as 0.9997 and 0.9976 for Tables 1 

and 2, respectively. These values, being very 

close to +1, indicate a very strong positive 

correlation between the actual and estimated 

bilirubin concentrations. 

In other words, as the actual bilirubin 

concentration increases, the estimated 

concentration also increases in a nearly linear 

manner. This result confirms the high accuracy 

and reliability of the proposed method for 

bilirubin quantification in this study (Figs. 7 

and 8). 

Table 1: Reflected Light Intensity at Different Bilirubin Concentrations in Phantoms Without Coffee 

Reflected Light Intensity (a.u.) Actual 
Concentration 

(mg/dL) 

Estimated 
Concentration 

(mg/dL) 
Error 

Percentage 
Absolute 

Error (%) Red Blue Green 

408 435 682 0.25 0.2404    -0.0096 -3.8400 

396 400 680 0.30 0.3755     0.0755 25.1667 

399 380 699 0.50 0.5085     0.0085 1.7000 

380 170 709 2 1.9213    -0.0787 -3.9350 

398 101 700 3 2.8200    -0.1800 -6.0000 

390 42 500 4 3.8340    -0.1660 -4.1500 

Pearson Correlation Coefficient: 𝑟 = 0.9997 
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Table 2 Reflected Light Intensity at Different Bilirubin Concentrations in Coffee-Infused Phantoms 

Reflected Light Intensity (a.u.) Actual 
Concentration 

(mg/dL) 

Estimated 
Concentration 

(mg/dL) 
Error 

Percentage 
Absolute 

Error (%) Red Blue Green 
204 217 341 0.25 0.2445 -0.0055 -2.2000 

198 200 340 0.30 0.3755 0.0755 25.1667 

170 190 390 0.50 0.6391 0.1391 27.8200 

190 85 355 2 1.9235 -0.0765 -3.8250 

160 56 404 3 2.8087 -0.1913 -6.3767 

188 27 388 4 4.0553 0.0553 1.3825 

Pearson Correlation Coefficient: 𝑟 = 0.9976 
 

 

 

Fig. 7 Estimated Bilirubin Concentrations at Different 

Actual Levels in Phantoms Without Coffee  

 

 

Fig. 8 – Estimated Bilirubin Concentrations at Different 

Actual Levels in Coffee-Infused Phantoms 

  

In addition to the correlation coefficient, 

analysis of percentage error is crucial for 

assessing measurement accuracy. In this study, 

the percentage error ranged from 1.3825% to 

27.8200%. The highest error was observed at a 

bilirubin concentration of 0.5 mg/dL, while the 

lowest error occurred at 4 mg/dL. 

This variation in error percentage may result 

from several factors, including the limited 

sensitivity of the device at lower 

concentrations, human errors during 

measurement, or slight variations in 

experimental and environmental conditions. 

IV. ANALYSIS OF EXPERIMENTAL 

RESULTS 

The present study was conducted to evaluate 

the accuracy and effectiveness of a non-

invasive method for measuring bilirubin 

concentration in neonates. To assess the 

validity and positioning of the proposed 

approach, the results were compared with those 

reported in previous studies. 

In the study by Surana et al., a Pearson 

correlation coefficient of 0.69 was reported 

between the invasive (blood test) and non-

invasive (JM-103 device) methods [14], 

indicating a moderate correlation. Other studies 

reported correlation values of 0.9997, 0.88, and 
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0.953, respectively [11–13]. In contrast, the 

device developed in this study demonstrated a 

correlation coefficient of over 0.9976, despite 

its low cost (under 5 million IRR), highlighting 

its high potential for screening applications. 

Measurements were performed based on optical 

principles using wavelengths directly related to 

bilirubin absorption. One of the key advantages 

of the device is its resilience to environmental 

interferences, such as ambient light and 

temperature changes. Additionally, through 

precise calibration and intelligent algorithms, it 

minimizes the effects of physical variables such 

as skin thickness and surface moisture. 

Another notable strength is the system's ability 

to compensate for different skin tones. Since 

melanin can significantly affect light reflection 

and absorption, the device design incorporates 

multi-band optical filters and dynamic 

calibration to adapt to various pigmentation 

levels. Experimental results confirmed 

consistent accuracy across light, medium, and 

dark skin tones. 

This feature is particularly important in multi-

ethnic clinical environments, where 

measurement reliability across all patients is 

crucial. The higher correlation coefficients 

observed in this study compared to previous 

works reflect the superior accuracy of the 

proposed method. This may be attributed to 

several factors, including advanced hardware 

design, use of high-sensitivity sensors, complex 

signal processing algorithms, and robust 

calibration techniques. Additionally, 

differences in sample type (phantoms vs. 

human subjects) may partially explain the 

variability observed across studies. Although 

the gelatin-based phantoms closely mimic the 

optical properties of human skin, their surface 

is smoother than natural skin. In this study, a 

thin matte coating was applied to promote 

uniform light diffusion and minimize the 

impact of surface smoothness. Additionally, 

maintaining a fixed distance between the sensor 

and the sample further reduced surface-related 

variability 

V. CONCLUSION 

This study focused on the design and 

development of a portable photometric device 

for the non-invasive measurement of 

transcutaneous bilirubin levels in neonates. 

Leveraging advanced optical technologies and 

digital signal processing, the device 

demonstrated high accuracy and minimal error, 

even in the presence of environmental 

interferences and individual variations such as 

skin pigmentation. 

The integration of stable light sources, precise 

optical filters, and an intelligent calibration 

system enabled reliable and repeatable results. 

Furthermore, the use of gelatin-based phantoms 

with standardized chromophores provided a 

suitable model for simulating human skin and 

assessing the device's performance under 

controlled laboratory conditions. 

With its compact size and low weight, the 

device offers excellent portability and can serve 

as an effective tool for early jaundice detection, 

particularly in clinical and underserved 

settings. Key advantages include non-

invasiveness, rapid measurement, reduced 

infection risk, and ease of use. 

Given the critical importance of timely 

diagnosis and treatment of neonatal jaundice in 

preventing serious complications, further 

development of similar devices with advanced 

features—such as integration with intelligent 

systems and real-time data analysis—is highly 

recommended. 

It is worth noting that the device is currently 

undergoing clinical evaluation, with initial 

human testing being conducted at a medical 

facility affiliated with Jahrom University of 

Medical Sciences, under approved ethical 

protocols. 
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