Estimation of Genetic Parameters for Milk Production Trait in Holstein Cows of the Mazandaran Gavdasht Herd Using Test Day Records
Subject Areas : Camelش. قره ویسی 1 , ر. عبداللهپور 2
1 - Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
2 - Department of Animal Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Keywords: Holstein, heritability, genetic parameters, RRM, TDR,
Abstract :
Random regression models (RRM) are used for genetic estimations of milk traits in dairy cows. RRM utilize data on traits that are repeated during the time, such as milk trait, which allows of the evaluation of the test day production information. In this study, to estimate genetic parameters for milk production trait, test day records (TDR) were collected from the first lactation of Holstein cows from a Mazandaran Gavdasht herd during the years 2001 to 2012. The data included 14150 TDR of milk production trait of 1460 Holstein cows. Analysis of TDR was performed using the DFREML software. The random regression was fitted according to the Legendrepolynomials model from days of lactation. The minimum of heritability (0.04) was estimated for the early lactation period and increased in the late of lactation, about the month 9 of lactation to its peak (0.29). The phenotypic variance was not same during the lactation period and it was too much in the early and late of lactation. The maximum of genetic variance was at the month 10 (19.81) and the minimum at the early of the lactation period (2.51). The residual variances were constant. The maximum of the genetic and phenotypic correlations were observed between adjacent days for milk production trait. Using TDR, accuracy of genetic parameter estimation was increased.
Bignardi A.B., Faro L.E., Torres Júnior R.A.A., Cardoso V.L., Machado P.F. and Albuquerque L.G. (2011). Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows. Genet. Mol. Res. 10(4), 3565-3575.
Borquis R.R.A., De Araujo Neto F.R., Baldi F., Hurtado-Lugo N., De Camargo G.M.F., Muñoz-Berrocal M. and Tonhati H. (2013). Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes. J. Dairy Sci. 96, 5923-5932.
Emam Jome kashan N. (1997). Genetic Evaluation in Husbandry. Publications of Nas, Tehran, Iran.
Farhangfar H., Naimipoor H. and Lotfi R. (2008). Genetic evaluation of milk production in Holstein cows KhorasanProvince using random regression model. J. Agri. Nat. Res. 43, 23.
Farhangfar H. and Rezaei H. (2007). Genetic evaluation of Holstein cows for milk production using test day model and 305 days. J. Agric. Nat. Res. 40, 18.
Jamrozik J. and Schaeffer L.R. (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. J. Dairy Sci. 80, 762-770.
Kettunen A., Mantysaari E.A. and Posp J. (2000). Estimation of genetic parameters for daily milk yield of primiparous Ayrshire cows by random regression test-day models. Livest. Prod. Sci. 66, 251-261.
Lasley J.F. (1987). Genetics of Livestock Improvement. Prentice-Hall International Inc. Englewood Cliffs, New Jersey.
Miglior F., Gong W., Wang T., Kistemaker G.J., Sewalem A. and Jamrozik J.J. (2009). Genetic parameters of production traits in Chinese Holsteins using a random regression test day model. J. Dairy Sci. 92, 4697-4706.
Moqadaszadeh Ahrabi S., Skandarynasab M., Alijani S. and Abbasi M. (2005). Estimation of genetic parameters of milk and fat production in Holstein cows using Test day records. J. Agric. Sci. Nat. Res. 34, 27.
Moqadaszadeh Ahrabi S., Skandarynasab M., Alijani S. and Abbasi M. (2004). Genetic evaluation of Holstein cattle for milk yield and fat using Test day records based on random regression model. Pp. 24 in Proc. 2nd Inte. Cong. Anim. Sci. Aqua, Karaj, Iran.
Olori V.E., Hill W.G., McGuirk B.J. and Brotherstone S. (1999). Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livest. Prod. Sci. 61, 53-63.
Razmkabir M., Moradi Shahr Babak M., Pakdel A. and Nejati Javarmy A. (2008). Estimation of genetic parameters of test day records for milk production in dairy cows. Pp. 38 3nd Nation. Cong. Anim. Sci., Ferdowsi University of Mashhad, Mashhad, Iran.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Silvestre A.M., Petim Batista F. and Colaco J. (2005). Genetic parameter estimates of portuguese dairy cows for milk, fat, and protein using a spline test-day model. J. Dairy Sci. 88, 1225-1230.
Sobhani A., Rajabalizadeh K. and Seyedsharifi R. (2008). Evaluation of genetic potential for milk production and fat percentage using classical records and daily in number of Holstein cows in country north west. Pp. 50 in Proc. 3nd Nation. Cong. Anim. Sci., Ferdowsi University of Mashhad, Mashhad, Iran.
Yarinezhad F., Roshanfekr H., Beigi Nassiri M., Nazari B. and Karimi K. (2008). Genetic evaluation of milk production traits in Holstein cows Yasuj using random regression. Pp. 41 in Proc. 3nd Nation. Cong. Anim. Sci., Ferdowsi University of Mashhad, Mashhad, Iran.