Effect of Dietary Non-Fiber Carbohydrate Sources and Sulfur Supplementation on in vitro Ruminal Fermentation and Digestibility of the Dairy Ration
Subject Areas : CamelA. Rosmalia 1 , I.G. Permana 2 , D. Despal 3 , T. Toharmat 4 , F.R. Pambudi 5 , S.I.Z. Arif 6
1 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
2 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
3 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
4 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
5 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
6 - Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Dramaga, Bogor, West Java, Indonesia
Keywords: sulfur, <i>in vitro</i> digestibility, non-fiber carbohydrate, rumen degradable protein,
Abstract :
Synchronization of rumen degradable protein (RDP), non-fiber carbohydrate (NFC), and sulfur availability are needed for optimum microbial protein synthesis (MPS), rumen fermentation activity, and feed digestibility. Cassava and corn are rich in NFC content and have different carbohydrate characteristics. Most of the tropical feedstuff is deficient in sulfur, thus it needs to be supplemented in the ration. This study aimed to compare the effect of corn and cassava as NFC sources and sulfur supplementation on fermentability and digestibility using in vitro study. The experiment used a 2 × 3 factorial randomized block design with four different dairy cattle rumen liquor as replications (block). The first factor was NFC sources (corn and cassava), and the second factor was the level of sulfur supplementation (0%, 0.1%, 0.2%). Parameters observed include fermentability (rumen pH, NH3 concentration, total volatile fatty acids (VFA), molar proportion of VFA, MPS, rumen bacteria, and protozoa population) and in vitro digestibility (dry matter (IVDMD) and organic matter (IVOMD)). Data were tested using ANOVA followed by the Duncan test. The result showed an interaction between rumen pH (P<0.05). The NH3 concentration was low in cassava treatment, while total VFA did not have a significant effect. Corn treatment produced a higher iso-butyrate and iso-valerate than cassava treatment (P<0.05). The rumen microbes, MPS, IVDMD, and IVDMD, did not differ among the treatments. Cassava could replace corn as an NFC source for tropical dairy ration along with providing RDP in balance ratio and sulfur supplementation.
Afzalzadeh A., Rafiee H., Khadem A.A. and Asadi A. (2010). Effects of ratios of non-fibre carbohydrates to rumen degradable protein in diets of Holstein cows: 1. Feed intake, digestibility and milk production. South African J. Anim. Sci. 40, 204-212.
Akib M.A., Setiawaty H. and Sulfiah H. (2014). Improving the quality of “leri” rice washing waste by different period of fermentation and yeast concentration as an alternative liquid organic fertilizer. Int. J. Agric. Syst. 2, 153-162.
Anzhany D., Toharmat T. and Despal D. (2022). Ration to produce milk high in conjugated linoleic acid (CLA) at smallholder dairy farm: an in vitro reconstruction. Am. J. Anim. Vet. Sci. 17, 130-138.
AOAC. (2005). Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.
Bainbridge M.L., Saldinger L.K., Barlow J.W., Alvez J.P., Roman J. and Kraft J. (2018). Alteration of rumen bacteria ands protozoa through grazing regime as a tool to enhance the bioactive fatty acid content of bovine milk. Front. Microbiol. 9, 1-13.
Bannink A., Kogut J., Dijkstra J., France J., Kebreab E., Van Vuuren A.M. and Tamminga S. (2006). Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238, 36-51.
Castillo-González A.R., Burrola-Barraza M.E., Domínguez-Viveros J. and Chávez-Martínez A. (2014). Rumen microorganisms and fermentation. Arch. Med. Vet. 46, 349-361.
Chanjula P., Ngampongsai W. and Wanapat M. (2007). Effects of replacing ground corn with cassava chip in concentrate on feed intake, nutrient utilization, rumen fermentation characteristics and microbial populations in goats. Asian-Australasian J. Anim. Sci. 20, 1557-1566.
Despal D., Manik D.T.P., Evvyernie D. and Zahera R. (2022). The accuracy of several in vitro methods in estimating in vivo digestibility of the tropical dairy ration. IOP Conf. Ser. Earth Environ. Sci. 951, 120-132.
Dieho K., Dijkstra J., Schonewille J.T. and Bannink A. (2016). Changes in ruminal volatile fatty acid production and absorption rate during the dry period and early lactation as affected by rate of increase of concentrate allowance. J. Dairy Sci. 99, 5370-5384.
Drewnoski M.E., Pogge D.J. and Hansen S.L. (2014). High-sulfur in beef cattle diets: A review. J. Anim. Sci. 92, 3763-3780.
Eastridge M.L. (2006). Major advances in applied dairy cattle nutrition. J. Dairy Sci. 89, 1311-1323.
Elghandour M.M.Y., Khusro A., Adgebeye M.J., Tan Z., Abu Hafsa S.H., Greiner R., Ugbogu E.A., Anele U.Y. and Salem A.Z.M. (2019). Dynamic role of single-celled fungi in ruminal microbial ecology and activities. J. Appl. Microbiol. 128, 950-965.
Felix T.L. and Loerch S.C. (2011). Effects of haylage and monensin supplementation on performance, carcass characteristics, and ruminal metabolism of feedlot cattle fed diets containing 60% dried distillers grains. J. Anim. Sci. 89, 2614-2623.
Firkins J.L., Yu Z. and Morrison M. (2007). Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 90, 1-16.
Gao X. and Oba M. (2016). Effect of increasing dietary nonfiber carbohydrate with starch, sucrose, or lactose on rumen fermentation and productivity of lactating dairy cows. J. Dairy Sci. 99, 291-300.
Habel J., Chapoutot P. and Koch C. (2022). Estimation of individual glucose reserves in high-yielding dairy cows. Animals. 3, 438-464.
Hackmann T.J. and Firkins J.L. (2015). Maximizing efficiency of rumen microbial protein production. Front. Microbiol. 6, 1-16.
Hall M.B., Larson C.C. and Wilcox C.J. (2010). Carbohydrate source and protein degradability alter lactation, ruminal, and blood measures. J. Dairy Sci. 93, 311-322.
Hall M.B., Nennich T.D., Doane P.H. and Brink G.E. (2015). Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo. J. Dairy Sci. 98, 3988-3999.
Hambakodu M. and Ina Y.T. (2019). In vitro digestibility evaluation of feed ingredients from agro-industry by-product. J. Agripet. 19, 7-12.
Henchion M., Moloney A.P., Hyland J., Zimmermann J. and McCarthy S. (2021). Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal. 15, 100287.
Henning P.H., Steyn D.G. and Meissner H.H. (1991). The effect of energy and nitrogen supply pattern on rumen bacterial growth in vitro. Anim. Prod. 53, 165-175.
Herrera-Saldana R.E., Huber J.T. and Poore M.H. (1990). Dry matter, crude protein, and starch degradability of five cereal grains. J. Dairy Sci. 73, 2386-2393.
Indah A.S., Permana I.G. and Despal D. (2020). Determination total digestible nutrient (TDN) of tropical fotage using nutrient composition. Livest. Anim. Res. 18, 38-43.
Joo J.W., Bae G.S., Min W.K., Choi H.S., Maeng W.J., Chung Y.H. and Chang M.B. (2005). Effect of protein sources on rumen microbial protein synthesis using rumen simulated continuous culture system. Asian-Australasian J. Anim. Sci. 18, 326-331.
Kaufman J.D., Pohler K.G., Mulliniks J.T. and Ríus A.G. (2018). Lowering rumen-degradable and rumen-undegradable protein improved amino acid metabolism and energy utilization in lactating dairy cows exposed to heat stress. J. Dairy Sci. 101, 386-395.
Kanjanapruthipong J., Buatong N. and Buaphan S. (2001). Effects of roughage neutral detergent fiber on dairy performance under tropical conditions. Asian-Aust. J. Anim. Sci. 14, 1400-1404.
Lestari D.A., Abdullah L. and Despal D. (2015). Comparative study of milk production and feed efficiency based on farmers best practices and national research council. Media Peternakan. 38, 110-117.
Li C., Beauchemin K.A. and Yang W. (2020). Feeding diets varying in forage proportion and particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. J. Dairy Sci. 103, 4340-4354.
Lu Z., Xu Z., Shen Z., Tian Y. and Shen H. (2019). Dietary energy level promotes rumen microbial protein synthesis by improving the energy productivity of the ruminal microbiome. Front. Microbiol. 10, 1-14.
Makkar H.P.S., Sharma O.P., Dawra R.K. and Negi S.S. (1982). Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65, 2170-2173.
Matthews C., Crispie F., Lewis E., Reid M., O’Toole P.W. and Cotter P.D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes. 10, 115-132.
McDonald P., Edwards R.A., Greenhalgh J.F.D., Morgan C.A., Sinclair L.A. and Wilkinson R.G. (2010). Animal Nutrition. Pearson, London, United Kingdom.
Mertens D.R. (1997). Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80, 1463-1481.
Miller W.J. (1979). Dairy Cattle Feeding and Nutrition. Academic Press, London, United Kingdom.
Nurdjanah S. and Elfira W. (2009). The profile of fiber composition and functional properties of dietary fiber from tuber starch residues. J. Technol. Ind. Hesil Pertanian. 14, 13-23.
Pathak A.K. (2008). Various factors affecting microbial protein synthesis in the rumen. Vet. World. 1, 186-189.
Permana I.G., Despal D., Rosmalia A. and Rahayu M.D. (2022). Inclusion of different level leucaena in dairy ration to balance rumen degradable and undegradable protein ratio. IOP Conf. Ser. Earth Environ. Sci. 1020, 120-133.
Pieper L., Wall K., Müller A.E., Roder A.and Staufenbiel R. (2016). Untersuchungen zur schwefelversorgung von milchkühen in Deutschland. Tierarztl. Prax. Ausg. G. Grosstiere Nutztiere. 44, 92-98.
Prachumchai R., Cherdthong A. and Wanapat M. (2021). Screening of cyanide-utilizing bacteria from rumen and in vitro evaluation of fresh cassava root utilization with pellet containing high sulfur diet. Vet. Sci. 8, 1-14.
Promkot C. and Wanapat M. (2009). Effect of elemental sulfur supplementation on rumen environment parameters and utilization efficiency of fresh cassava foliage and cassava hay in dairy cattle. Asian-Australasian J. Anim. Sci. 22, 1366-1376.
Putridinanti A.D., Noviandi C.T., Gunawan Agus A., Harper K. and Poppi D. (2019). A comparison of three highly fermentable carbohydrate sources (corn, cassava powder or cassava pulp) on in vitro digestion. IOP Conf. Ser. Earth Environ. Sci. 387, 12-26.
Rebelo L.R., Luna I.C., Messana J.D., Araujo R.C., Simioni T.A., Granja-Salcedo Y.T., Vito E.S., Lee C., Teixeira I.A.M.A., Rooke J.A. and Berchielli T.T. (2019). Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle. Anim. Feed Sci.Technol. 257, 1-14.
Rodríguez R., Sosa A. and Rodríguez Y. (2007). Microbial protein synthesis in rumen and its importance to ruminants. Cuban J. Agric. Sci. 41, 287-294.
Rosendo O., Hall M.B., Staples C. and Bates D. (2003). The effect of different neutral-detergent-soluble polysaccharides in digestive cynetics in vitro of neutral detergent forrage fiber and the synthesis of microbial protein. Rev. Cient. Fac. Cienc. Vet. Univ. Zulia. 13, 18-27.
Rosmalia A., Astriani A., Sahroni W.P., Permana I.G. and Despal D. (2022a). Effect of rumen degradable protein and sulfur supplementation on in vitro digestibility and ruminal fermentation. IOP Conf. Ser. Earth Environ. Sci. 951, 12013.
Rosmalia A., Dewi N.A., Permana I.G. and Despal D. (2022b). Reformulation of dairy cattle concentrate based on rumen degradable protein to undegradable protein ratio at different energy levels: in vitro study. IOP Conf. Ser. Earth Environ. Sci. 1020, 12008.
Rosmalia A., Permana I.G. and Despal D. (2022c). Synchronization of rumen degradable protein with non-fiber carbohydrate on microbial protein synthesis and dairy ration digestibility. Vet. World. 15, 252-261.
Rosmalia A., Permana I.G. and Despaland Zahera R. (2021). Estimation rumen degradable protein of local feeds in dairy cattle using in sacco method. IOP Conf. Ser. Earth Environ. Sci. 883, 12010.
Sahroni W.P., Permana, I.G. and Despal D. (2021). Reformulation of dairy cow diets based on rumen degradable protein and total digestible nutrient with varying levels on in vitro fermentability and digestibility. IOP Conf. Ser. Earth Environ. Sci. 888, 12075.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Smith N.W., Fletcher A.J., Hill J.P. and McNabb W.C. (2022). Modeling the contribution of milk to global nutrition. Front. Nutr. 8, 1-7.
Srakaew W., Wachirapakorn C., Cherdthong A.and Wongnen C. (2021). Ruminal degradability and bypass nutrients of alkaline or steam-treated cassava chip and corn grain. Trop. Anim. Sci. J. 44, 451-461.
Staack L., Pia E.A.D., Jorgensen B., Pettersson D. and Pedersen N.R. (2019). Cassava cell wall characterization and degradation by a multicomponent NSP-targeting enzyme (NSPase). Sci. Rep. 9, 10150-10161.
Sun F., Aguerre M.J. and Wattiaux M.A. (2019). Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows. J. Dairy Sci. 102, 1281-1293.
Supapong C., Anusorn C., Wanapat M., Chanjula P. and Uriyapongson S. (2019). Effects of sulfur levels in fermented total mixed ration containing fresh cassava root on feed. Animals. 9, 1-11.
Sutton J.D., Dhanoa M.S., Morant S.V., France J., Napper D.J. and Schuller E. (2003). Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. J. Dairy Sci. 86, 3620-3633.
Tilley J.M.A. and Terry R.A. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104-111.
Urrutia N.L. and Harvatine K.J. (2017). Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 147, 763-769.
Vakili A., Mesgaran M.D., Jahani-Azizabadi H., Ghovvati S., Milani E. and Rezaee F. (2010). The effect of non-fibre carbohydrates supplementation on methanogenesis bacteria and protozoa populations in rumen fluid as determined by real-time polymerase chain reaction. Adv. Anim. Biosci. 1, 253-253.
Villalba J.J., Ates S. and MacAdam J.W. (2021). Non-fiber carbohydrates in forages and their influence on beef production systems. Front. Sustain. Food Syst. 5, 1-12.
Waldi L., Suryapratama W. and Suhartati F.M. (2017). Pengaruh penggunaan bungkil kedelai dan bungkil kelapa dalam ransum berbasis indeks sinkronisasi energi dan protein terhadap sintesis protein mikroba rumen sapi perah. J. Livest. Sci. Prod. 1, 1-12.
Wanapat M., Foiklang S., Sukjai S., Tamkhonburi P., Gunun N., Gunun P., Phesatcha K., Norrapoke T. and Kang S. (2018). Feeding tropical dairy cattle with local protein and energy sources for sustainable production. J. Appl. Anim. Res. 46, 232-236.
Wang L., Zhang G., Li Y. and Zhang Y. (2020). Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals. 10, 1-12.
Wu H., Meng Q. and Yu Z. (2015). Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures. Bioresour. Technol. 186, 25-33.
Yulistiani D., Puastuti W., Haryanto B., Purnomoadi A., Kurihara M. and Thalib A. (2017). Complete rumen modifier supplementation in corn cob silage basal diet of lamb reduces methane emission. Indonesian J. Agric. Sci. 18, 33-42.
Zhao Y., Xie B., Gao J. and Zhao G. (2020). Dietary supplementation with sodium sulfate improves rumen fermentation, fiber digestibility, and the plasma metabolome through modulation of rumen bacterial communities in steers. Appl. Environ. Microbiol. 86, 1-18.
Zheng Y., Xue S., Zhao Y. and Li S. (2020). Effect of cassava residue substituting for crushed maize on in vitro ruminal fermentation characteristics of dairy cows at mid-lactation. Animals. 10, 1-13.