A Review on Biohydrogenation and Effects of Tannin on It
Subject Areas : Camelر. ولیزاده یونجالی 1 , ف. میرزایی آقجه قشلاق 2 , ب. نویدشاد 3 , س. کرامتی جبهدار 4
1 - Department of Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran
2 - Department of Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran
3 - Department of Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran
4 - Department of Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran
Keywords: milk composition, fatty acid, human health, plant metabolites,
Abstract :
The process called biohydrogenation occurs mainly in ruminant animals and during it, unsaturated fatty acids, and particularly poly-unsaturated ones (linoleic and linolenic) coverts to a saturated form of stearic acid. For many years, the beneficial effects of biohydrogenation intermediate fatty acids like cis-9 trans-11 linoleic acid, the main natural isomer of conjugated linoleic acids (CLA), and the isomer of trans-9 trans-11 CLA, especially in preventing cancer, has been proved. Many researches tried to use different components to interference biohydrogenation and increase the mediator substrates of CLA (e.g. vaccenic acid (VA)). Recently, due to the effects on rumen microorganism population, so do on biohydrogenation, tannin, a poly phenolic compound, is in the center of considerations. It is well known that tannins, specially condensed tannins, affect the bacteria population involved in biohydrogenation. Consequently, reduction in biohydrogenation via dietary inclusion of tannin is a useful tool to change the milk fatty acid profile toward health promoting fatty acids.
Alves S.P., Francisco A., Costa M., Santos-Silva J. and Bessa R.J.B. (2017). Biohydrogenation patterns in digestive contents and plasmaof lambs fed increasing levels of a tanniferous bush (Cistus ladanifer) and vegetable oils. Anim. Feed Sci. Technol. 225, 157-172.
Bauman D.E., Perfield J.W., de Veth M.J. and Lock A.L. (2003). New perspectives on lipid digestion and metabolism in ruminants. Pp. 175-189 in Proc. Cornell Nutr. Conf.Cornell University, Ithaca, New York.
Benchar C. and Chouinard P.Y. (2009). Shortcommunication: Assessment of the potential of cinnamaldehyde, condensed tannins, and saponins to modify milk fatty acid composition of dairy cows. J. Dairy Sci. 92, 3392-3396.
Booth R.G., Dann W.J., Kon S.K. and Moore T. (1935). A new variable factor in butter fat. Chem. Ind.52, 270-275.
Bu D.P., Wang J.Q., Dhiman T.R. and Liu S.J. (2007). Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. J. Dairy Sci. 90, 998-1007.
Buccioni A., Pauselli M., Viti C., Minieri S., Pallara G., Roscini V., Rapaccini S., Trabalza Marinucci M., Lupi P., Conte G. and Mele M. (2015). Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci. 98, 1145-1156.
Cabiddu A., Molle G., Decandia M., Spada S., Fiori M., Piredda G. and Addis M. (2009). Responses to condensed tannins of flowering sulla (Hedysarum coronarium) grazed by dairy sheep Part II: Effects on milk fatty acid profile. Livest. Sci. 123, 230-240.
Carreno D., Hervs G., Toral P.G., Belenguer A. and Frutos P. (2015). Ability of different types and doses of tannin extracts to modulate in vitro ruminal bio hydrogenation in sheep. Anim. Feed Sci. Technol. 202, 42-51.
Chilliard Y., Glasser F., Ferlay A., Bernard L., Rouel J. and Doreau M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. European J. Lipid Sci. Technol. 109, 828-855.
Dawson R.M.C. and Kemp P. (1969). The effect of defaunation on the phospholipids and on the hydrogenation of unsaturated fatty acids in the rumen. Biochem. J. 115, 351-352.
Devillard E., McIntosh F.M., Newbold C.J. and Wallace R.J. (2006). Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and VA, yet do not hydrogenate linoleic acid or desaturate stearic acid. British J. Nutr. 96, 697-704.
Durmic Z., McSweeney C.S., Kemp G.W., Hutton P., Wallace R.J. and Vercoe P.E. (2008). Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Anim. Feed Sci. Technol. 145, 271-284.
Ferreira D., Brandt E.V., Coetzee J. and Malan E. (1999). Condensed tannins. Prog. Chem. Org. Nat. Prod. 77, 22-59.
Fievez V., Vlaeminck B., Jenkins T., Enjalbert F. and Doreau M. (2007). Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. European J. Lipid Sci. Technol. 109, 740-756.
Ghaffari M.H., Tahmasbi A.M., Khorvash M., Naserian A.A., Ghaffari A.H. and Valizadeh H. (2014a). Effects of pistachio by-products in replacement of alfalfa hay on populations of rumen bacteria involved in biohydrogenation and fermentative parameters in the rumen of sheep. Anim. Phisiol. Anim. Nut. 98, 578-586.
Ghaffari M.H., Tahmasbi A.M., Khorvash M., Naserian A.A. and Vakili A.R. (2014b). Effects of pistachio by-products in replacement of alfalfa hay on ruminal fermentation, blood metabolites, and milk fatty acid composition in Saanen dairy goats fed a diet containing fish oil. J. Appl. Anim. Res. 42, 186-193.
Girard V. and Hawke J.C. (1978). The role of holotrichs in the metabolism of dietary linoleic acid in the rumen. Bioch. Biophys. Acta. 528, 17-27.
Glasser F., Ferlay A. and Chilliard Y. (2008). Oilseed lipid supplements and fatty acid composition of cow milk: A meta-analysis. J. .Dairy Sci. 91, 4687-4703.
Griinari J.M. and Bauman D.E. (1999). Biosynthesis of CLA and Its Incorporation into Meat and Milk in Ruminants, in Advances in CLA Research.AOCS Press, Champaign, Illinois.
Grosse Brinkhaus A., Bee G., Silacci P., Kreuzer M. and Dohme-Meier F. (2016). Effect of exchanging Onobrychis viciifolia and Lotus corniculatus for Medicago sativa on ruminal fermentation and nitrogen turnover in dairy cows. J. Dairy Sci. 99, 4384-4397.
Guerreiro O., Alves S.P., Costa M., Cabo A., Duarte M.F., Jerónimo E. and Bessa R.J.B. (2016). Effects of extracts obtained from Cistus ladanifer on in vitro rumen biohydrogenation. Anim. Feed Sci. Technol. 219, 304-312.
Hagerman A.E. and Butler L.G. (1989). Choosing appropriate methods and standards for assaying tannins. J. Chem. Ecol. 11, 1535-1544.
Harfoot C.G. and Hazlewood G.P. (1997). Lipid metabolism in the rumen. Pp. 382-426 in The Rumen Microbial Ecosystem. P.N. Hobson and C.S. Stewart, Eds. Chapman and Hall, London, New York.
Harfoot C.G. and Hazlewood G.P. (1988). Lipid metabolism in the rumen. Pp. 285-322 in The Rumen Microbial Ecosystem. P.N. Hobson and C.S. Stewart, Eds. Elsevier Science Publishing, New York.
Haslam E. (1989). Plant Polyphenols. Cambridge University Press, Cambridge.
Heidarian Miri V., Ebrahimi S.H. and Tyagi A.K. (2015). The effect of cumin (Cuminum cyminum) seed extract on theinhibition of PUFA biohydrogenation in the rumen oflactating goats via changes in the activity of rumen bacteriaand linoleate isomerase enzyme. Small Rum. Res. 125, 56-63.
Hedqvist H., Mueller-Harvey I., Reed J.D., Krueger C.G. and Murphy M. (2000). Characterization of tannins and in vitro protein digestibility of several Lotus corniculatus varieties. Anim. Feed Sci. Technol. 87, 41-56.
Houseknecht K., Vanden Heuvel J.P., Moya-Camarena S.Y., Portocarrero C.P., Peck L.W., Nickel K.P. and Belury M.A. (1998). Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem. Biophys. Res. Commun. 244, 678-682.
Ip C., Chin S.F., Scimeca J.A. and Pariza M.W. (1991). Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res. 51, 6118-6124.
Ishlaka M., Günal A. and Abu Ghazaleha A. (2015). The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Anim. Feed Sci. Technol. 207, 31-40.
Jafari S., Goh Y.M., Rajion M.A., Faseleh Jahromi M. and Ebrahimi M. (2016). Ruminal methanogenesis and biohydrogenation reduction potential of papaya (Carica papaya) leaf: An in vitro study. Italian J. Anim. Sci. 15(1), 157-165.
Jenkins T.C., Wallace R.J., Moate P.J. and Mosley E.E. (2008). Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86, 397-412.
Kälber T., Kreuzer M. and Leiber F. (2013). Milk fatty acid composition of dairy cows fed green whole-plant buckwheat, phacelia or chicory in their vegetative and reproductive stage. Anim. Feed Sci. Technol. 193, 71-83.
Keeney M. (1970). Lipid metabolism in the rumen. Pp. 504-518 in Physiology and Metabolism in the Ruminant. A.T. Phillipson, Ed. Oriel Press, Newcastle-upon-Tyne.
Kemp P., White R.W. and Lander D.J. (1975). The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90, 100-114.
Kepler C.R., Hirons K.P., McNeill J.J. and Tove S.B. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem. 241, 1350-1354.
Khiaosa-Ard R., Bryner S.F., Scheeder M.R.L., Wettstein H.R., Leiber F., Kreuzer M. and Soliva C.R. (2009). Evidence for the inhibition of the terminal step of ruminal linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 92, 177-188.
Kronberg S.L., Scholljegerdes E.J., Barcelo-Coblijn G. and Murphy E.J. (2007). Flaxseed treatments to reduce biohydrogenation of alpha linolenic acid by rumen microbes in cattle. Lipids. 42, 1105-1111.
Krueger N.A., Anderson R.C., Callaway T.R., Edrington T.S., Beier R.C., Shelver W.L. and Nisbet D.J. (2009). Effects of antibodies and glycerol as potential inhibitors of ruminal lipase activity. Pp 575 in Proc. Conf. Gastrointest. Func. Chicago, Illinois.
Krueger W.K., Gutierrez-Banuelosf H., Carstens G.E., Min B.R., Pinchak W.E., Gomez R.R., Anderson R.C., Krueger N.A and Forbes T.D.A. (2010). Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim. Feed. Sci. Technol. 159, 1-9.
Lee J.H., Cho K.H., Lee K.T. and Kim M.R. (2005). Antiatherogenic effects of structured lipid containing conjugated linoleic acid in C57BL/6J mice. J. Agric. Food Chem. 53, 7295-7301.
Liu H., Vaddella V. and Zhou D. (2011). Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 94, 6069-6077.
Lock A.L. and Bauman D.E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids. 39, 1197-1206.
Lourenco M., Ramos-Morales E. and Wallace R.J. (2010). The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal. 7, 1008-1023.
Macáková K., Koleckar V., Cahlikova L., Chlebek J., Hostalkova A., Kuca K., Jun D. and Opletal L. (2014). Tannins and their influence on health. Rec. Adv. Med. Chem. 1, 159-208.
Maia M.R.G., Chaudhary L.C., Bestwick C.S., Richardson A.J., McKain N., Larson T.R., Graham I.A. and Wallace R.J. (2010). Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 10, 52-60.
Maia M.R.G., Chaudhary L.C., Figueres L. and Wallace R.J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek. 91, 303-314.
Makkar H.P.S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 49, 241-256.
Makkar H.P.S., Becker K., Abel H.J. and Szegletti C. (1995a). Degradation of condensed tannins by rumen microbes exposed to quebracho tannins (QT) in rumen simulation technique (RUSITEC) and effects of QT on fermentation processes in the RUSITEC. J. Sci. Food Agric. 69, 495-500.
Makkar H.P.S., Blümmel M. and Becker K. (1995b). In vitro effects and interactions of tannins and saponins and fate of tannins in rumen. J. Sci. Food Agric. 69, 481-493.
Minieri S., Buccioni A., Rapaccini S., Pezzati A., Benvenuti D., Serra A. and Mele M. (2014). extract on soybean and linseed oil biohydrogenation by solid associated bacteria: An in vitro study. Italian J. Anim. Sci. 13, 604-608.
Mlambo V. and Mapiye C. (2015). Towards household food and nutrition security in semi-arid areas: What role for condensed tannin-rich ruminant feedstuffs?. Food Res. Int. 76, 953-961.
Mueller-Harvey I. (2006). Unravelling the conundrum of tannins in animal nutrition and health. Sci. Food Agric. 86, 2010-2037.
Palmquist D.L., Lock A.L., Shingfield K.J. and Bauman D.E. (2005). Biosynthesis of conjugated linoleic acid in ruminants and humans. Adv. Food Nut. Res. 50, 179-217.
Papanastasis V.P., Yiakoulaki M.D., Decandia M. and Dini-Papanastasi O. (2008). Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Anim. Feed Sci. Technol. 140, 1-17.
Parodi P.W. (2003). Conjugated Linoleic Acid in Food, in Advances in Conjugated Linoleic Acid Research. AOCS Press, Champaign, Illinois.
Patra A.K. and Saxena J. (2010). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91, 24-37.
Polan C.E., McNeill J.J. and Tove S.B. (1964). Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol. 88, 1056-1064.
Puchala R., Min B.R., Goetsch A.L. and Sahlu T. (2005). The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 83, 182-186.
Rahimi A., Naserian A.A., Valizadeh R., Tahmasebi A.M. and Shahdadi A.R. ( 2014). Effects of using Pistachio hull and PEG on intake and digestability of feed, blood metabolites, production and milk fatty acid profile in dairy Saanen goats. Iranian J. Anim. Sci. Res. 6, 227-238.
Rana M.S., Tyagi A., Asraf Hossain S.K. and Tyagi A.K. (2012). Effect of tanniniferous Terminalia chebula extract on rumen biohydrogenation, Δ9-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids. Meat Sci. 90, 558-563.
Sedighi-Vesagh R., Naserian A.A., Ghaffari M.H. and Petit H.V. (2014). Effects of pistachio by-products on digestibility, milk production, milk fatty acid profile and blood metabolites in Saanen dairy goats. Anim. Phisiol. Anim. Nutr. 99, 777-787.
Shingfield K.J., Reynolds C.K., Herva´s G., Griinari J.M., Grandison A.S. and Beever D.E. (2006). Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows. J. Dairy Sci. 89, 714-732.
Shakeri P., Ghaffari M.H. and Fazaeli H. (2016). Pistachio by- product as a forage source for ruminant nutrition: A review (part B: Ammonia, microbial protein synthesis, fermentation and biohydrogenation in the rumen, methane and blood metabolites). Anim. Sci. J. (Pajouhesh & Sazandeghi). 113, 99-110.
Singh S. and Hawke J.C. (1979). The in vitro lipolysis and biohydrogenation of monogalactosyldiglyceride by whole rumen contents and its fractions. J. Sci. Food Agric. 30, 603-612.
Sivakumaran S., Molan A.L., Meagher L.P., Kolb B., Foo L.Y., Lane G.A., Attwood G.A., Fraser K. and Tavendale M. (2004). Variation in antimicrobial action of proanthocyanidins from Dorycnium rectum against rumen bacteria. Phytochemistry. 65, 2485-2497.
Soltan Y.A., Morsy A.S., Sallam S.M., Lucas R.C., Louvandini H., Kreuzer M. and Abdalla A.L. (2013). Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch. Anim. Nutr. 67, 169-184.
Szczechowiak J., Szumacher-Strabe M., El-Sherbiny M., Pers-Kamczyc E., Pawlak P. and Cieslak A. (2016). Rumen fermentation, methane concentration and fatty acid proportion in the rumen and milk of dairy cows fed condensed tannin and/or fish-soybean oils blend. Anim. Feed Sci. Technol. 216, 93-107.
Toral P.G., Hervas G., Bichi E., Belenguer A. and Frutos P. (2011). Tannins as feed additives to modulate ruminal biohydrogenation: Effects on animal performance, milk fatty acid composition and ruminal fermentation in dairy ewes fed a diet containing sunflower oil. Anim. Feed Sci. Technol. 164, 199-206.
Toral P.G., Hervas G., Bichi E., Belenguer A. and Fruitos P. (2013). Effect of the inclusion of quebracho tannins in diet rich in linoleic acid on milk fatty acid composition in dairy ewes. J. Anim. Sci. 96, 431-439.
Van de Vossenberg J.L. and Joblin K.N. (2003). Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett. Appl. Microbiol. 37, 424-428.
Van Nevel C.J. and Demeyer D.I. (1996). Influence of pH on lipolysis and biohydrogenation of soybean oil by rumen contents in vitro. Reprod. Nutr. Dev. 36, 53-63.
Vasta V., Mele M., Serra A., Scerra M., Luciano G., Lanza M. and Priolo A. (2009). Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. J. Anim. Sci. 87, 2674-2684.
Vasta V., Ya˜nez-Ruiz D.R., Mele M., Serra A., Luciano G., Lanza M., Biondi L. and Priolo A. (2010). Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl. Environ. Microbiol. 76, 2549-2555.
Waghorn G.C. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production–progress and challenges. Anim. Feed Sci. Technol. 147, 116-139.
Wallace R.J., Chaudhary L.C., McKain N., McEwan N.R., Richardson A.J., Vercoe P.E., Walker N.D. and Paillard D. (2006). Clostridium proteoclasticum: A ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett. 265, 195-201.
Williams A.G. and Coleman G.S. (1992). The Rumen Protozoa. Springer-Verlag, New York.
Wright D.E. (1960). Pectic enzymes in rumen protozoa. Arch. Biochem. Biophys. 86, 251-254.
Ya´n˜ez-Ruiz D.R., Williams S. and Newbold C.J. (2007). The effect of absence of protozoa on rumen biohydrogenation and the fatty acid composition of lamb muscle. Br. J. Nutr. 97, 938-948.
Yang S.L., Bu D.P., Wang J.Q., Hu Z.Y., Li D., Wei H.Y., Zhou L.Y. and Loor J.J. (2009). Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal. 3, 1562-1569.
Zhang C.M., Guo Y.Q., Yuan Z.P., Wu Y.M., Wang J.K., Liu J.X. and Zhu W.Y. (2008). Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol. 146, 259-269.