Economic Analysis and Assessing Energy Performance of Simulation-Powered Optimal Window Type and Window to Wall Ratio for Residential Buildings in Tehran
Subject Areas : architectureAlireza Karimpour 1 , Darab Diba 2 , Iraj Etessam 3
1 - PhD candidate in Architecture, Islamic Azad University, Central Tehran Branch, Tehran,
2 - Professor, Faculty of Arts and Architecture, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
3 - Professor, Faculty of Arts and Architecture, Islamic Azad University, Science and Research Branch, Tehran, Iran.
Keywords:
Abstract :
Sustainable development as a process for meeting human development goals has an undeniable impact on all aspects of human life while sustaining the ability of natural systems to continue to provide the natural resources. In spite of worldwide climate change problems caused by fossil fuel use, energy consumption levels in Iran are already high and continue to rise each year. About 40% of energy consumed by the residential buildings in this country is fossil fuel-derived. Therefore providing solutions to reduce energy consumption in this sector is very important.Tehran is the largest city of Iran and significant amounts of energy are consumed in this city. However, due to its location in semi-arid climatic region, it benefits from high sun’s radiation even in winter and low relative humidity of the air. There is high potential for energy conservation in residential buildings of Tehran. Therefore the introduction of energy efficient buildings in this city would have a significant overall impact on national energy consumption levels.Nowadays, sun shading devices are one of the most efficient elements to manage the interaction between the interiors and exteriors of buildings. They can significantly reduce cooling energy demand, improve thermal comfort, prevent the heat loss in the winter and reduce potential glare problems in residential ( (also in office and commercial) buildings.Sun shading devices can be categorized according to their placement as interior, exterior and mid-pane. Result of research and studies shows that the effectiveness increase 35% by using outside shade protection instead of inside one. This research is aware of this fact that optimized internal sun shading devices are not comparable with the external sun shading devices in efficiency and performance. Although due to the increased utilization of them in the residential buildings, this research studied the internal sun shading devices and determined the optimized internal sun shading system, and then analyzed its effect on the energy consumption in the residential building model.In this study at the first phase, the combination of four types of internal sun shading devices with three types of windows are evaluated by the Parasol simulation software to determine the optimized internal sun shading system. Simulations show that the double glazed transparent window with white dense reflective Blind ( (as optimized sun shading system), has most appropriate thermal behavior.At the next step, a building model as a case study ( (The six-story apartment in the city of Tehran) was considered for simulations of energy consumption. The Building Calc. software was applied for energy simulations and heating, cooling and total energy consumption of building was calculated with and without optimized internal sun shading system. The result shows that efficiency of internal sun shading devices increase by using dense texture, high reflectance and low transfer rate.Energy consumption of residential buildings in Tehran reduced up to 14% only by using optimized internal sun shading system. This method could be one of the best solutions to reduce the energy demand in residential buildings because of the large coordination with Iran’s economic, cultural and social conditions.Keywords: Sustainable development, Energy conservation, Sun shading system, Internal sun shading device, Energy consumption simulation.
1. اطلس کلانشهر تهران. (1393). اقلیم و آلودگی هوای تهران. بازیابی 3 بهمن، 1393، از http://atlas.tehran.ir/Default.aspx?tabid=171
2. رضایی حریری، محمدتقی؛ و فیاض، ریما. (1380). محدوده آسایش حرارتی در تهران، محیط شناسی، 28، 18 ـ 13.
3. زمردیان، زهرا سادات؛ نصراللهی، فرشاد؛ و علیآبادی، محمد. (1391). کاهش مصرف انرژی در مدارس با طراحی بهینه پنجرهها و سایبانها (مطالعه موردی: مدارس شیراز)، دومین همایش ملی اقلیم، ساختمان و بهینهسازی مصرف انرژی، 2776-2765. بازیابی 20 بهمن، 1393، از http://www.icnc.ir/index.aspx?pid=966&metadataId
4. سازمان ملی استاندارد ایران. (1393). نشریه 10291. درب و پنجرههای آلومینیومی ساختمان. بازیابی 10 دی، 1393، از http://www.isiri.org/portal/files/std/10291.pdf
5. سازمان ملی استاندارد ایران. (1393). نشریه 1-8521. مجموعه شیشههای دو یا چند جداره ـ ویژگیها ـ قسمت اول: با لایه هوا. بازیابی 11 دی، 1393، از http://ifco.ir/building/standard/doc/8521-1.pdf
6. سازمان ملی استاندارد ایران. (1393). فهرست دارندگان گواهینامه ثبت برند کالاهای وارداتی. بازیابی 3 اسفند، 1393، از http://isiri.org/Portal/Home/Default.aspx?CategoryID=ddbcb887-6203-4ac1-816a-2749185bd00f
7. سالاری سردری، فرضعلی؛ بیرانوندزاده، مریم؛ و علیزاده، دانا. (1393). نقش سرمایه اجتماعی در توسعه پایدار محلی (مطالعه موردی: سکونتگاههای شهری و روستایی منطقه عسلویه). هویت شهر. 8 (19)، 88-77.
8. شهرداری تهران. (1393). معرفی شهر تهران. شرایط اقلیمی. بازیابی 20 بهمن، 1393، از http://www.tehran.ir/Default.aspx?tabid=117
9. علیخانی، سلیمه؛ آصفزاده، سعید؛ محبیفر، رفعت؛ و منتظری، علی. (1391). بررسی شاخص توسعه انسانی در ایران و کشورهای منتخب. پایش. 11، 423-415.
10. غیائی، محمد مهدی؛ مهدوی نیا، مجتبی؛ طاهباز، منصوره؛ و مفیدی شمیرانی، مجید. (1392). روششناسی گزینش نرمافزارهای کاربردی شبیهساز انرژی در حوزه معماری. هویت شهر. 7(13)، 55-45.
11. محمد، شقایق. (1392). مطالعه رفتار حرارتی مصالح رایج در ساخت دیوار مطالعه موردی: ساختمانهای مسکونی شهر تهران. هنرهای زیبا ـ معماری و شهرسازی. 18(1)، 78 ـ 69.
12. مرکز آمار ایران. (1393). سرشماری عمومی نفوس و مسکن 1390. اقلام سرشماری. بازیابی 19 بهمن، 1393، از http://www.amar.org.ir/Default.aspx?tabid=1283
13. مهندسین مشاور نقش جهان ـ پارس. (1386). مطالعات طرح جامع مسکن تهران. تهران: پدیدآورنده.
14. وزارت مسکن و شهرسازی. (1388). مقررات ملی ساختمان. مبحث نوزدهم صرفهجویی در مصرف انرژی. بازیابی 17 آذر، 1393، از prd.behdasht.gov.ir/uploads/IranNR-19.pdf
15. نصراللهی، فرشاد. (1390). ضوابط معماری و شهرسازی کاهش دهنده مصرف انرژی ساختمانها، کمیته ملی انرژی ایران، 45-1. بازیابی 17 دی، 1393، از http://www.saba.org.ir/saba_content/media/image/2012/03/3512_orig.pdf
16. Bader, S. (2011). High-performance façades for commercial buildings. Austin: The University of Texas.
17. Bessoudo, M., Tzempelikos, A., Athienitis, A.K., & Zmeureanu, R. (2010). Indoor thermal environmental conditions near glazed facades with shading devices. Elsevier, 45, 2506-2516.
18. Bülow-Hübe, H., Kvist, H., & Hellström, B. (2003). Estimation of the performance of sunshades using outdoor measurements and the software tool Parasol. Proceedings ISES Solar World Congress. June 14-19, (p.p. 1-6). Gothenburg: Lund University. Retrieved May 11, 2014, from http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=699802&fileOId=711430.
19. Chen, B., Ji, Y. & Xu, P. (2012). Impact of window shading devices on energy performance of prototypical buildings. Shanghai: Institute of HVAC and gas engineering. Tongji University. Retrieved September 18, 2014, from http://www.ibpsa.org/proceedings/asim2012/0148.pdf.
20. Datta, G. (2001). Effect of fixed horizontal louver shading devices on thermal performance of building by TRNSYS simulation. Renewable Energy Congress. February 23-24, (p.p. 497-507). Brighton: Pergamon. Retrieved December 22, 2014, from http://ecaaser3.ecaa.ntu.edu.tw/weifang/SysEng/passive%20cooling/Horizontal%20louver%20shading%20effect.pdf.
21. Freewan, A. (2011). Improving thermal performance of offices in just using fixed shading devices. World renewable energy congress, May 1-8, (pp. 1860-1867). Linköping: LEA. Retrieved April 18, 2014, from http://www.ep.liu.se/ecp/057/vol8/016/ecp57vol8_016.pdf.
22. Givoni, B. (1998). Climate considerations in building and urban design. New York: Van Nostrand Reinhold.
23. Khezri, N. (2012). Comparative Analysis of PV Shading Devices for Energy Performance and Daylight, Unpublished master’s thesis. Norwegian university of science and technology. Trondheim. Retrieved March 6, 2014, from https://www.ntnu.no/wiki/download/attachments/48431699/Master_Noora.pdf?version=1&modificationDate=1340098697442.
24. Low Energy Architecture Research Unit (LEARU). (2004). Daylight & energy efficient artificial lighting, Low Energy Architecture Research Unit of the London Metropolitan University, Retrieved June 12, 2014, from http://www.learn.londonmet.ac.uk/packages/tareb/docs/special/deeal_daylighting_en.pdf.
25. Ludvigsvensson. (2015). Retrieved March, 2015, from http://www.ludvigsvensson.com/climatescreens/products/climate-screens#Harmony.
26. Nasrollahi, F., Wehage, P., Shahriari, E., & Tarkashvand, A. (2013). Energy Efficient Housing for Iran Pilot Buildings in Hashtgerd New Town. Berlin: Universitätsverlag der TU Berlin.
27. Olgyay, V., & Olgyay, A. (1963). Design with Climate: Bioclimatic Approach to Architectural Regionalism. New Jersey: Princeton University.
28. Tzempelikos, A., & Roy, M. (2004). A Simulation design study for the facade renovation of an office building, Canadian solar buildings conference. August 20-24, (pp. 101-108). Montreal: Research gate.
29. Wall, M., & Bülow-Hübe, H. (2001). Solar Protection in buildings Energy and Building Design. Dept. Construction and architecture. Lund: Lund University.
30. Wienold, J., Frontini, F., Herkel, S. & Mende, S. (2011). Climate based simulation of different shading device systems for comfort and energy demand. Proceedings of Building Simulation. 12th Conference of International Building Performance Simulation Association. November 14-16, (pp. 2680-2686). Sydney: ISAAC. Retrieved June 23, 2014, from http://www.ibpsa.org/proceedings/bs2011/p_1833.pdf.
31. Yang, K.h. & lin, h.t., (1990), the analysis of external shading effect on building energy conservation. ASHRAE thermal performance of the exterior envelopes of building IV conference, December 4-7,(pp. 126-134). Orlando: LBL.
32. Yao, J., & Yan, C. (2011). Evaluation of The Energy Performance of Shading Devices based on Incremental Costs. World Academy of Science, Engineering and Technology, 5(5), 450-452. Retrieved May 16, 2014, from http://waset.org/publications/9145/evaluation-of-the-energy-performance-of-shading-devices-based-on-incremental-costs.
33. Zhang Q. (2004). Residential energy consumption in China and its comparison with Japan, Canada and USA. Energy and Buildings, 36, 1217-1225.