Data mining on the ossibility study of urban fabric's physical change modeling
Subject Areas :
urbanism
ناجی پژمان ضیایی
1
,
محمد نقی زاده
2
,
سید مصطفی مختاباد
3
1 - گروه شهرسازی، دانشکده هنر و معماری، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
2 - گروه شهرسازی، دانشکده هنر و معماری، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
3 - دانشکده هنر و معماری، دانشگاه تربیت مدرس، تهران، ایران.
Received: 2017-07-26
Accepted : 2019-01-15
Published : 2022-10-23
Keywords:
urban fiber,
data mining,
Kermanshah,
Faizabad neighborhood,
Physical changes,
Abstract :
Urban expansion has been a very important topic not only in the management of sustainable development, but also in the fields of remote sensing and geographic information science. Urban planners also encounter a huge challenge to require the understanding of the complex urban growth process, which involves various factors with different patterns of behavior. Modeling of an urban development pattern is the prerequisite to understanding the process and might be the first step in making a decision on urban planning. The main issues of great importance in land use modeling include spatial dynamics, temporal dynamics, incorporation of human drivers of land use changes, and scale dynamics. Dynamic simulation models and empirical estimation models have been used to model land use changes. Rule-based simulation models are mostly suitable for incorporating spatial interaction effects and handling temporal dynamics. However, Cellular Automata (CA) models do not focus on interpretation or understanding of Spatio-temporal processes of urban growth. Most dynamic simulation models cannot incorporate enough socioeconomic variables. Empirical estimation models use statistical techniques to model the relationships between land use changes and the drivers based on historic data. As an empirical estimation method, a regression model has been used in deforestation analysis, agriculture, and urban growth modeling.This paper tends to apply a regression to model urban changes in the old part of the Kermanshah city (Faizabad neighborhood) from 1956 to 2011. In this regard, multi-temporal airborne images were used as a data source. According to the common assumptions, urban physical forms are characterized as the results of a complex deliberation process that involves consideration of many factors. Monitoring of urban fibers transformation through airborne images and translating the obtained data provide a systematic database which can be used in empirical analyses. Applying a grid network for the first time yields the images to quantify obtained results from every cell of the network. In the second step, each cell value recorded for the available temporal period and the Minitab 16 software were used to gain regression equations from these values. The nearest relation between cells value in an observed period was provided by the software as a quadratic equation. Adding an appropriate value to equations gives an estimated amount for its related cell in the selected period of time. The approach was calibrated for 2016 by cross comparing of actual and simulated cells value. In order to examine the modeling precision, the same process was done for 2016 images and cells data were extracted. After the cross comparing, the simulation results were consonant more than 70% with actual data of 2016, which was satisfactory to approve the calibration process. Urban development programs and non-professional interventions in this case study area caused to more disparities and dismantle the logic of the model. Simplicity and the easiness of the proposed model are main privileges in comparison with the previous ones. In summary, this model can be used as a quick responsible way to predict urban changes in specific areas which give acceptable schematic responses.
References:
احدنژادروشتی، محسن؛ زلفی، علی؛ و شکریپوردیزج، حسین. (1390). ارزیابی و پیشبینی گسترش فیزیکی شهرها با استفاده از تصاویر ماهوارهای چند زمانه و سیستم اطلاعات جغرافیایی (مطالعه موردی شهر اردبیل 1363 - 1400).آمایش محیط، 15 (4)، 107-124.
احمدی ندوشن، مژگان؛ و سفیانیان، علیرضا. (۱۳۸۸). آشکارسازی و پیشبینی تغییرات پوشش اراضی شهر اراک. مجموعه مقالات همایش ژئوماتیک. شانزدهمین همایش و نمایشگاه ملی ژئوماتیک. اردیبهشت 25-26، (ص12-23). تهران: سازمان نقشهبرداری کشور.
اصغریزمانی، اکبر؛ ملکی، سعید؛ و موحد، علی. (1389). پیشبینی تغییرات کاربری اراضی شهر زنجان با استفاده از مدل CLUE - S.جغرافیا و توسعه ناحیهای، 15(8)، 39-64.
المدرسی، سید علی؛ مشتاقیون، مریم؛ و جمالی، علی اکبر. (1394). مدلسازی رشد و توسعه شهر بیابانی یزد با استفاده از تحلیلهای پیشرفته فضایی، در بازه زمانی 1999-2020.کاوشهای جغرافیایی مناطق بیابانی، 3(1)، 47-27.
بازرگان لاری، عبدالرضا. (1391).ریگراسیون خطی کاربردی. (چاپ سوم). شیراز: انتشارات دانشگاه شیراز.
حبیبی، کیومرث؛ پوراحمد، احمد؛ و مشکینی، ابوالفضل. (۱۳۷۶).بهسازی و نوسازی بافتهای کهن شهری. (چاپ اول). تهران: نشر انتخاب.
ضیایی، ناجی پژمان؛ نقی زاده، محمد؛ و مختاباد امرئی، سید مصطفی. (1396). بازیابی الگوهای شکلدهنده به ساختار کالبدی شهر در راستای تبیین مفهوم ماشین شهرسازی.ماهنامه علمی پژوهشی باغ نظر، 14(52)، 59-70.
عطا، بهنام؛ رهنما، محمدرحیم؛ و آرخی، صالح. (1396). ارزیابی و پیشبینی تغییرات و پراکنش افقی شهرها با استفاده از تصاویر چند زمانه و مدل CA_MARKOV مطالعه موردی: شهر گنبدکاووس.مجله آمایش جغرافیایی فضا، 7(23)، 25-40.
یوسفی، مریم؛ مکانیکی، جواد؛ اشرفی، علی؛ و نیسانی سامانی، نجمه. (1396). آشکارسازی و مدلسازی تغییرات کاربری اراضی با استفاده از دادههای سنجش از دور، مدل زنجیره مارکوف و سلولهای خودکار (مطالعه موردی: شهر بجنورد).مجله آمایش جغرافیایی فضا، 7(26)، 1-16.
Allen, J., & Lu, K. (2003). Modeling and prediction of future urban growth in the Charleston Region of South Carolina: a GIS-based Integrated Approach. Conservation Ecology, 8(2), 2 [online] .
Anselin, L. (1988). Spatial Econometrics. Methods and Models. Kluwer Academic Publishers: Dordrecht
Clapham Jr, W. B. (2003). Continuum-based classification of remotely sensed imagery to describe urban sprawl on a watershed scale. Remote Sensing of Environment, 86(3), 322-340.
Gamba, P., Aldrighi, M., & Stasolla, M. (2011). Robust extraction of urban area extents in HR and VHR SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 27-34.
Geoghegan, J., Villar, S. C., Klepeis, P., Mendoza, P. M., Himmelberger, Y. O., & Chowdhury, R. R. (2001) .Modeling tropical deforestation in the southern Yucatan peninsular region: comparing survey & satellite data. Agriculture, Ecosystems and Environment, 85(1-3), 25-46.
Google earth V 5.2.1.1329 (beta). (January 10, 2010). Kermanshah , Iran. 34° 19’ 07.18”N, 47° 04’ 31.14”E, Eye alt 4458 feet. Digital Globe 2012.
Hu, Z., & Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667-688.
Irwin, E. G., & Geoghegan, J. (2001). Theory, data, methods: developing spatially explicit economic models of land use change. Agriculture, Ecosystems and Environment, 85, 7–23.
Landis , J., & Zhang, M. (1998). The second generation of the California urban futures model. Part 2: Specification and calibration results of the land-use change submodel. Environment and Planning B: Planning and Design, 25(6), 795-824.
Li, X., & Yeh, A. G. O. (1998). Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 19(8), 1501-1518.
McCullagh, P., Nelder, J. (1989). Generalized Linear Models.(Vol. 37). CRC Press: Boca Raton.
2 Schneider, L., & Pontius Jr, R. G. (2001). Modeling land use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 85, 83–94.
2 Serneels, S., & Lambin, E. F. (2001). Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agriculture, Ecosystems and Environment, 85, 65–81.
2 Teimouri, A., Rabieifar, V., Hadavi, F., & Hadavi, M. (2014). Evaluating and Predicting Horizontal Expansion of the City of Qazvin Emphasizing the Land-Use Changes from 1986 to 2011. Journal of Urban Economics and Management, 2(5), 15-27.
2 Waddell, P. (2002). UrbanSim: Modeling urban development for land use, transportation, and environmental planning. Journal of the American planning association, 68(3), 297-314.
2 Walsh, S. J., Crawford, T. W., Welsh, W. F., & Crews-Meyer, K. A. (2001). A multiscale analysis of LULC and NDVI variation in Nanrong district, northeast Thailand. Agriculture, Ecosystems and Environment, 85, 47–64.
White, R., & Engelen, G. (1997). Cellular automata as the basis of integrated dynamic regional modelling. Environment and Planning B: Planning and design, 24(2), 235-246.
Wu, F., & Yeh, A. G. O. (1997). Changing spatial distribution and determinants of land development in Chinese cities in the transition from a centrally planned economy to a socialist market economy: a case study of Guangzhou. Urban studies, 34(11), 1851-1879.
Xie, C., Huang, B., Claramunt, C., Chandramouli, C. (2005). Spatial logistic regression and GIS to model rural-urban land conversion. Proceedings of PROCESSUS Second International Colloquium on the Behavioural Foundations of Integrated Land-use and Transportation Models: Frameworks, Models and Applications, June 12–15. Toronto: University of Toronto press.
_||_