The effect of the geometric form of the ceiling on the acoustic parameters of the music hall
Subject Areas : architectureSepideh Mostafaie 1 , Vahdaneh Fooladi 2 * , Mahtiam Shahbazi 3
1 - Ph.D. Candidate, Department of Architectural Engineering, Faculty of Architectural, Qeshm Branch, Islamic Azad University, Qeshm, Iran.
2 - Assistant Professor, Department of Architecture, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Assistant Professor, Department of Architecture, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Keywords: Acoustic Design, Odeon Software, Architectural Acoustic, Music Hall,
Abstract :
Since the time of the first civilizations, music has been an inseparable part of human life and is considered as a kind of
communication between them and life. Therefore, it is not surprising that people have been trying to create the best and
highest quality environments for music performance for years. A poorly designed acoustic environment creates obstacles
to its function, makes people disinterested in being there, and certainly harms their health. Acoustics is a branch of physics
that deals with the production, control and monitoring, transmission, reception, and effects of sound. Acoustic design is the
planning, shaping, and decorating of enclosed spaces to establish an acoustic environment. Since the beginning of acoustics,
designers and scientists have been directing, amplifying, and absorbing sound by creating architectural forms. This article
aims to improve the sound quality of music halls by relying on architectural methods. This article deals with the design and
analysis of the architectural acoustics of a multi-purpose music hall. Due to the sensitivity of the acoustic conditions of the
hall during music performances, especially symphony performances, the priority of the architectural and acoustic design of
this hall is also music. The designed capacity of the hall is 1000 people and is considered on two floors. In the initial design,
all domestic and foreign standards for multi-purpose halls have been applied. The acoustic parameters SPL, RT, STI, EDT,
and ALCOVES, which are among the most important acoustic issues for multi-purpose halls, have been analyzed. The
desired acoustic analyses have been carried out by Odeon software, which is one of the most powerful acoustic software. In
the interior design of this hall, two different architectural designs have been made; in the first design, the ceiling of the hall
is arched (waves along the length of the hall), and in the second design, the ceiling is designed as regular breaks, taking into
account sound frequencies. After designing the hall and taking the output from the acoustic software, the RT parameter in the
arched ceiling was 1.65 and in the dry ceiling was 1.3, the STI parameter in the arched ceiling was 0.66 and the ceiling with
a break was 0.84, the EDT parameter in the arched ceiling was 1.15 and in the ceiling with a break was 1.2, the ALCOVE
parameter in the arched ceiling was 3.1% and in the ceiling with a break was 1.86%, the SPL parameter in the arched ceiling
was 107.5 and in the ceiling with a break was 105.7. The reason for the high SPL parameter in the arched ceiling is the faster
transmission of sound waves to the end of the hall, while sound waves in the ceiling with a break are absorbed earlier and
the sound volume is reduced. According to the software analysis, it can be concluded that the ceiling with a break is better
in acoustic conditions than the arched ceiling, and for acoustic systems (Electroacoustics) the arched ceiling is better than
the ceiling with a break.
1. رحمت آبادی، سید سجاد؛ چالیش، بهار؛ و رحمت آبادی، طاهره. (1392). موانست پارادایم¬ها درساختار و آرایه¬های معماری نمونه موردی اتاق موسیقی عالی قاپوخانه شیخ صفی الدین. نشریه سیویلیکا.
2. رضایی، محمد مهدی؛ و رهایی، امید. (1393). بررسی ضوابط آکوستیکی در طراحی جداره سالن های نمایش. نشریه سیویلیکا.
3. سخندان، زهرا؛ نصرالهی، فرشاد؛ و غفاری، عباس. (1397). بهینهسازی عملکرد آکوستیکی جذبکنندههای صوتی با تاکید بر تناسب و ارتفاع فضا. هویت شهر، 13(37)18-5.
4. غفاری، عباس. (1392). بهبود شرایط آکوستیک در مساجد با نگرش تحلیلی وضوح گفتار در مساجد دوره قاجار تبریز با رویکرد تاثیر آجر و تزئینات آجری بر زمان واخنش. پایاننامه دکتری، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران.
5. فیضی، محسن؛ حسینی، سیدباقر؛ مجیدی، وحید؛ و احمدی، جواد. (1396). ارزیابی مولفههای موثر بر ارتقا کیفیت فضای معماری در کتابخانههای عمومی. هویت شهر، 11 (31)54-43.
6. قلیزاده، فرزانه؛ غفاری، عباس؛ و کینژاد، محمدعلی. (1400). واکاوی شرایط آکوستیکی مساجد تاریخی تبریز از منظر گونهبندی حجمی و فرمی، پایگاه مرکز اطلاعات علمی جهاد دانشگاهی، 10(20)84-105
7. قیابکلو، زهرا. (1391). طراحی آکوستیک سالن همایش چند منظوره با الهام از پوسته صدف دریایی. دانشکدگان هنرهای زیبا.
8. قیابکلو، زهرا. (1393). مبانی فیزیک ساختمان (آکوستیک)، (ویرایش هشتم.) انتشارات جهاد دانشگاهی.
9. میرزابابالو، مریم؛ حسینی، بهشید؛ غفاری، عباس؛ و ایروانی، هوتن. (1402). ارتقاء حس مکان در کتابخانه مرکزی شهر تبریز با بررسی متغیرهای آکوستیک در معماری. فصلنامه مطالعات فضا و مکان، 2(1)14-5
10. Barron, M. (2010). Auditorium acoustics and architectural design. 2nd ed. London: Spon Press.
11. Barron, M., & Kissner, S. (2021). A possible acoustic design approach for multi-purpose auditoria suitable for both speech and music. Arch Acoustic. 46:121–33.
12. Beranek, L. (2012). Concert halls and opera houses: music, acoustics, and architecture.
13. Berati, C., Belloni, E., Merli, F., Ambrosi, M., Shtrepi, L., & Astolfi, A. (2022). From Worship Space To Auditorium: “Acoustic Design And Experimental Analysis Of Sound Absorption Systems For The New Auditorium Of San Francesco Al Prato In Perugia (Italy); 45 :121-33.
14. Blaszczak, P., Berdowska, S., & Berdowski, J. (2021). Analysis of sound field distribution in architecturally diverse temple. Arch Acoustic, 46:121–33.
15. BlZeng, X., Christensen, C.L., & Rindel, J.H. (2006). Practical methods to define scattering coefficients in a room acoustics computer model. Appl Acoust, 67 (8):771_86.
16. Cairoli, M. (2020). Ancient shapes for modern architectural and acoustic design: Large interiors formed by curved surfaces. Appl Acoustic. 170:107497.
17. Cairoli, M. (2021). The architectural acoustic design for a multipurpose auditorium:Le Serre hall in the Villa Erba Convention Center. Appl Acoustic. 173:107695.
18. Chiles, S. (2004). Sound behavior in proportionate spaces and auditoria Ph.D. University of Bath.
19. D’Orazio, D., Fratoni, G., & Garai, M. (2017). Acoustics of a chamber music hall inside a former church by means of sound energy distribution. Can Acoustic, 45(4):7–17.
20. Fuchs, H., & Lamprecht, J. (2013). Covered broadband absorbers improving functional acoustic tics in communication rooms. Applied Acoustics, 74(1), 18-27.
21. Kissner, S., Barron, M., & Blau, M. (2010). Limits of intelligible speech in medium sized multi purpose spaces. Fortschritte der Akustik – DAGA. 951–2.
22. Marbjerg, G., Brunskog, J., & Jeong, C.H. (2018). The difficulties of simulating the acoustics of an empty rectangular room with an absorbing ceiling. Applied Acoustics,141, 35 45.
23. Merli, F., & Bevilacqua, A. (2020). Using a church as a temporary auditorium. Acoustical design of S. Domenico of Imola. J Physics: Conf Series, 1655:012146.
24. Peisheng, Zhu., Wanqi, Tao., Fangshuo, Mo., Fei, Guo., Xiaodong, Lu., & Xidong, Liu. (2020). Experimental comparison of speech transmission index measurement in natural sound rooms and auditoria. Appl acoustic. 165:107326
25. Reinten, J., Braat-Eggen, PE., Hornikx, M., Kort, HSM., & Kohlrausch, A. (2017). The indoor sound environment and human task performance: A literature review on the role of room acoustics. Build Environ. 123:315–32.
26. Rossing, T. (2010). Springe Hand book of Acoustic.
27. Shtrepi, L. (2019). Investigation on the diffusive surface modeling detail in geometrical acoustics based simulations. J Acoustic Soc Am, 145(3):EL215–21.
28. Shtrepi, L., Astolfi, A., Puglisi, G.E., & Masoero, M.C. (2017). Effects of the distance from a diffusive surface on the objective and perceptual evaluation of the sound field in a small simulated variable-acoustics hall. Appl Sci, 7(3):224.