Monitoring flood-prone areas by integrating hydrological, climatic, and remote sensing data (Case study: Hele Watershed)
Subject Areas :
1 -
Keywords: Flood, flood-prone areas, Hele Watershed,
Abstract :
Flooding is one of the most significant and common natural disasters globally, and with the increasing intensity and frequency of this phenomenon, concerns about mortality and economic losses have significantly risen. Iran, due to its vast territory, climatic diversity, and changes in land use, faces major and destructive floods every year. This situation has made the monitoring and identification of flood-prone areas particularly important. This study aimed to identify flood-prone areas in the Hele Watershed in Bushehr Province using the fuzzy analytic hierarchy process based on hydrological parameters (distance from waterways and drainage density), climatic parameters (precipitation), and remote sensing parameters (slope, elevation, and vegetation cover). Digital maps for each parameter were created using ArcGIS 10.3, and the likelihood of flood accumulation for each class of factors, as well as the importance of each relative to others, was assessed through expert opinions. Subsequently, the weights for each factor were calculated in ArcGIS 10.3. These derived weights were applied to the relevant layers, resulting in the creation of flood-prone area maps in five different classes. The results showed that 43,159.95 hectares (2.03%), 301,819.05 hectares (14.19%), 797,968.18 hectares (37.52%), 607,429.53 hectares (28.59%), and 376,284.51 hectares (17.69%) of the HHele Watershed fall into the categories of very low, low, moderate, high, and very high vulnerability, respectively. The western, northwestern, and downstream sections of the watershed are in the high to very high vulnerability class, primarily due to low slope, low elevation, poor drainage density, and high precipitation. Conversely, areas with low to very low vulnerability are mainly situated in the upstream regions, encompassing much of the northern and eastern parts of the basin, where steeper slopes, higher elevations, and greater drainage density are observed.
اسفندیاری درآباد فریبا، لایقی صدیقه، مصطفی زاده رئوف، حاجی خدیجه. پهنهبندی پتانسیل خطر وقوع سیلاب حوضه آبخیز قطورچای با روشهای تصمیمگیری چندمعیاره ANP و WLC. تحلیل فضایی مخاطرات محیطی. ۱۴۰۰; ۸ (۲) :۱۳۵-۱۵۰.
افتخاری، عبدالرضا محمودی قدیری؛ اکبر پرهیزکار؛ سیاوش شایان (۱۳۸۸). تحلیلی بر دیدگاه های نظری آسیب پذیری جامعه نسبت به مخاطرات طبیعی، فصلنامه مدرس علوم انسانی دوره .۱۳ شماره ۱ صفحات ۳۱-۳۰. https://hsmsp.modares.ac.ir/article-21-9702- fa.html
امیدوار، کمال، مخاطرات طبیعی، چاپ اول، انتشارات دانشگاه یزد (1390).
بلیانی سعید، خسروی یونس، عباسی سمنانی علیرضا. پهنه بندی مخاطرات بارشی منجر به خشکسالی و سیل در حوضه های آبریز حله و مند . تحلیل فضایی مخاطرات محیطی. ۱۳۹۵; ۳ (۴) :۱۳-۳۴
ثروتی، محمدرضا جمشید جداری عیوضی؛ کیا بزرگمهر (۱۳۸۵). محاسبه و تحلیل دبی متوسط سیل با استفاده از روش تحلیل منطقه ای سیلاب در محدوده خیررود نوشهر تا سرد آبرود ،چالوس جغرافیایی سرزمین دوره ۳. شماره ۲ پیاپی ۱۰، ۷۹-۶۳. https://sarzamin.srbiau.ac.ir/article_5951.html
حجازی, اسدالله , نگهبان, سعید , موسوی, سیده معصومه و امین زاده, محمد هادی . (1403). بررسی و پهنه بندی خطر سیلاب حوضههای آبریز شهری با استفاده از مدلهای فازی ویکور و روش خطی وزنی (مطالعه موردی: حوضه آبریز ایذه- خوزستان). پژوهشهای ژئومورفولوژی کمی. doi: 10.22034/gmpj.2024.452640.1499, 13(2), 51-70
شامکوئیان, حمیرا , داوری, کامران و فرشته پور, محمد . (1401). ارزیابی خطر سیلخیزی در حوضه آبخیز رودخانه زشک شاندیز با استفاده از مدلسازی بر مبنای سنجشازدور و روش تحلیل سلسلهمراتبی-فازی. پژوهش آب ایران. doi: 10.22034/iwrj.2022.13882.2401.
غلامی، مینا و بهمنیاری، هاجر،1390،بررسی منابع آلاینده حوضه آبریز شاپور- دالکی وحله،همایش منطقه ای جنگلها و محیط زیست ضامن توسعه پایدار،https://civilica.com/doc/123458
کشتکار، امیررضا، فیضی، زهرا، افضلی، علی، پهنهبندی اراضی مستعد پخش سیلاب با استفاده از فرایند تحلیل سلسله مراتبی در محیط سامانه اطلاعات جغرافیایی (مطالعه موردی: محدوده جنوبی دشت کاشان)، نشریه علمی پژوهشی مهندسی و مدیریت آبخیز، جلد10، شماره 4، 1397، صص 580-529.
لطفی، حیدر؛ مهتاب جعفری (۱۳۹۰) فرایند ایمن سازی شهری درجهت مقابله با مخاطرات طبیعی (سیل) مطالعه موردی: شهر تهران فصلنامه علمی پژوهشی فضای جغرافیایی. سال .۱۱ شماره ۳۶ صفحات ۲۹۶-۲۸۳.
Antzoulatos, G., Kouloglou, I. O., Bakratsas, M., Moumtzidou, A., Gialampoukidis, I., Karakostas, A., & Kompatsiaris, I. (2022). Flood hazard and risk mapping by applying an explainable machine learning framework using satellite imagery and GIS data. Sustainability, 14(6), 3251.
Baalousha, H. M., Younes, A., Yassin, M. A., & Fahs, M. (2023). Comparison of the fuzzy analytic hierarchy process (F-AHP) and fuzzy logic for flood exposure risk assessment in arid regions. Hydrology, 10(7), 136.
Blistanova, M., Zeleňáková, M., Blistan, P., & Ferencz, V. (2016). Assessment of flood vulnerability in Bodva river basin, Slovakia. Acta Montanistica Slovaca, 21(1).
Cao, Y., Jia, H., Xiong, J., Cheng, W., Li, K., Pang, Q., & Yong, Z. (2020). Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian Province, China. ISPRS International Journal of Geo-Information, 9(12), 748.
Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 2019(651):2087–2096.
Collin, A., Calle, C., James, D., Costa, S., Maquaire, O., Davidson, R., & Trigo-Teixeira, A. (2020). Modelling 2D coastal flooding at fine-scale over vulnerable lowlands using satellite-derived topobathymetry, hydrodynamic and overflow simulations. Journal of Coastal Research, 95(SI), 1052-1056.
Desalegn H, Mulu A (2020) Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon. https:// doi.org/10.1016/j.heliyon.2020.e05865.
Ekmekcioğlu, Ö., Koc, K., & Özger, M. (2021). District based flood risk assessment in Istanbul using fuzzy analytical hierarchy process. Stochastic Environmental Research and Risk Assessment, 35, 617-637.
Filianoti, P., Gurnari, L., Zema, D. A., Bombino, G., Sinagra, M., & Tucciarelli, T. (2020). An evaluation matrix to compare computer hydrological models for flood predictions. Hydrology, 7(3), 42.
Gacu, J. G., Monjardin, C. E. F., Senoro, D. B., & Tan, F. J. (2022). Flood risk assessment using GIS-based analytical hierarchy process in the municipality of Odiongan, Romblon, Philippines. Applied Sciences, 12(19), 9456.
Gigovi´cPamuˇcarBaji´cDrobnjak LDZS (2017) Application of GISinterval rough AHP methodology for flood hazard mapping in urban areas. Water 9(360):1–26.
Guan, X., Yu, F., Xu, H., Li, C., & Guan, Y. (2024). Flood risk assessment of urban metro system using random forest algorithm and triangular fuzzy number based analytical hierarchy process approach. Sustainable Cities and Society, 109, 105546.
Hagos, Y. G., Andualem, T. G., Yibeltal, M., & Mengie, M. A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl Water Sci 12, 148, 2022.
Islam MK, Sado K. Flood Hazard Assessment In Bangladesh Using NOAA AVHRR Data With Geographical Information System. Hydro Proc, (2000). 14: 605-20.
Kowalzig J (2008) Climate, poverty, and justice: what the Poznań UN climate conference needs to deliver for a fair and effective global deal. Oxfam 4(3):117–148.
Mezgebedingil AG, Suryabhagavan KV (2018) Developing flood hazard forecasting and early warning system in Dire Dawa Ethiopia. Int J Adv Multidiscip Res 5:11–27
Noamen, B.; Taoufik, H.; Arfa, S.B. Flood risk assessment and mapping using multi-criteria analysis (AHP) model and GIS: Case of the Jendouba Governorate—Northwestern Tunisia. Int. J. Water Sci. Environ. Technol. 2020, 2, 139–149.
Ogato GS, Bantider A, Abebe K, Geneletti D (2020) Geographic information system (GIS)–based multi criteria analysis of flooding hazard and risk in Ambo Town and its watershed, West shoa zone, Oromia regional State Ethiopia. J Hydrol Reg Stud. https://doi. org/10.1016/j.ejrh.2019.10.
Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Seo, M., & Choi, S. M. (2023). Application of genetic algorithm in optimization parallel ensemblebased machine learning algorithms to flood susceptibility mapping using radar satellite imagery. Science of The Total Environment, 873, 162285.
Rimba AB, Setiawati MD, Sambah AB, Miura F (2017) Physical flood vulnerability mapping applying geospatial techniques in Okazaki city, aichi prefecture Japan. Urban Sci 1(1):7.
Rincón D, Khan UT, Armenakis C (2018) Flood risk mapping using GIS and multi-criteria analysis: a greater Toronto area case study. Geosciences 8:275. https://doi.org/10.3390/geosciences8080275.
Shaikh, M. P., Yadav, S. M., & Manekar, V. L. (2024). Flood hazards mapping by linking CF, AHP, and fuzzy logic techniques in urban areas. Natural Hazards Review, 25(1), 04023048.
Sivanpillai, R., Jacobs, K. M., Mattilio, C. M., & Piskorski, E. V. (2021). Rapid flood inundation mapping by differencing water indices from pre-and post-flood Landsat images. Frontiers of Earth Science, 15, 1-11.
Ullah, K., & Zhang, J. (2020). GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. Plos one, 15(3), e0229153.
Vojtek M, Vojteková J (2019) Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water 11:364. https://doi.org/10.3390/w11020364
Wondim, Y. K. (2016). Flood hazard and risk assessment using GIS and remote sensing in lower Awash sub-basin, Ethiopia. Journal of Environment and Earth Science, 6(9), 69-86.