Vegetation Vulnerability Probability Index: A Method for Determining Desertification Risk
Subject Areas : Agriculture, rangeland, watershed and forestryEsmail Heydari Alamdarloo 1 , Pouyan Dehghan Rahimabadi 2 , Hassan Khosravi 3 * , Javad Rafie Sharifabad 4 , Hassan Barabadi 5
1 - Postdoc, Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Iran
2 - Ph.D. in Combat to Desertification, Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Iran
3 - Associate ProfessorDepartment of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources, University of Tehran, Iran
4 - Ph.D. in Combat to Desertification, Faculty of Natural Resources, University of Hormozgan, Iran
5 - Ph.D. in Combat to Desertification, Faculty of Natural Resources, University of Kashan, Iran
Keywords: Vegetation cover, Yazd, Desertification, remote sensing,
Abstract :
Determining desertification risk can be a good way to prioritize an area for management and control of the desertification process. One determinant of desertification risk is the use of the Probability of Vegetation Vulnerability Index (PVVI). For this purpose, in this study, LST and EVI of MOD11A2 and MOD13A2 products, respectively, from MODIS sensors were used to calculate TCI and VCI to estimate VHI in Yazd province from 2001 to 2019. VHI, which indicates the severity of drought, was classified into five classes. Then, the probability of occurrence for each class was calculated and multiplied by the weight of each class, which was between zero and 4 based on the severity of the drought. Finally, by adding the values obtained for each class, PVVI was calculated. The results showed that in the western, eastern, and southern parts of Yazd province, the risk of vegetation degradation and consequent desertification is generally higher than in other areas. The highest probability of Non-drought class occurs in Abarkooh (VHI = 68.34) and the lowest is in Ardakan (VHI = 53.59). Abarkooh with 14.03% and Ardakan with 46.02% have the lowest and the highest areas in the high class of PVVI. Also desert areas and uncovered lands, such as Abarkuh, were at low risk of desertification, which could be due to the ecological inability of this area to regenerate the vegetation cover. In general, the evaluation of the results obtained in this study showed that PVVI can distinguish real deserts from the areas that are at risk of desertification.
1. Abdollahi A, Nezhad M.P, Pradhan B. 2019. Investigation of the Vegetation Cover and the Vulnerability of the Mashhad Regions to Desertification by Using MODIS Image and EVI. In 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). 46-49. doi:https://doi.org/10.1109/CYBERNETICSCOM.2019.8875666.
2. Almeida-Ñauñay A.F, Villeta M, Quemada M, Tarquis A.M. 2022. Assessment of Drought Indexes on Different Time Scales: A Case in Semiarid Mediterranean Grasslands. Remote Sensing, 14(3): 565.
3. Baghaeinezhad N, Akbari A, Beheshti ghalezoo E. 2018. Land use monitoring to assess desertification using remote sensing. Journal of Environmental Science and Technology. doi:https://doi.org/ 10.22034/jest.2018.15782.2438. (In Persian).
4. Choubin B, Heydari Alamdarloo E, MosaviA, Sajedi Hosseini F, Ahmad S, Goodarzi M, Shamshirband Sh, 2019. Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. Cold Regions Science and Technology, 167: 2019, 102870.
5. Cong D, Zhao S, Chen C, Duan Z. 2017. Characterization of droughts during 2001-2014 based on remote sensing: a case study of Northeast China. Ecological Informatics, 39: 56-67.
6. Dehghan Rahimabadi P. Azarnivand H. Khosravi H. Zehtabian G. Moghaddam Nia A. 2020. An ecological agricultural model using fuzzy AHP and PROMETHEE II approach. DESERT, 26(1): 71-83. doi:https://doi.org/10.22059/jdesert.2020.303314.1006778.
7. Ding Y, Li Z, Peng S. 2020. Global analysis of time-lag and-accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 92: 102179.
8. Gao Y.H, Xu Y.J, Yang S.Q, Liu C, Ni B.S. 2013. Research and design of a drought remote sensing monitoring system based on the ArcGIS geoprocessing technology. Journal of Southwest University (natural science edition), 35(4):1-7.
9. Haghighi Khomami M, Tajaddod M.J, Ravanbakhsh M, Jamalzad Fallah F. 2021. Vegetation classification based on wetland index using object based classification of satellite images (Case study: Anzali wetland). RS and GIS for Natural Resources, 12(3): 1-17. (In Persian).
10. Hasheminasab S.N, Jafari R. 2018. Evaluation of Land Use Changes order to Desertification Monitoring Using Remote Sensing Techniques. Journal of Spatial Analysis Environmental Hazards, 5(3): 67-82. (In Persian).
11. Heydari Alamdarloo E, Behrang Manesh M, Khosravi H. 2018. Probability assessment of vegetation vulnerability to drought based on remote sensing data. Environmental monitoring and assessment, 190(12): 702.
12. Heydari Alamdarloo E, Khosravi H, Nasabpour S, Gholami A. 2020. Assessment of drought hazard, vulnerability and risk in Iran using GIS techniques. Journal of Arid Land, 12(6): 984–1000. https://doi.org/10.1007/s40333-020-0096-4.
13. Hill J, Stellmes M, Udelhoven T, Röder A, Sommer S. 2008. Mediterranean desertification and land degradation: mapping related land use change syndromes based on satellite observations. Global and Planetary Change, 64(3-4): 146-157.
14. Jiang W, Niu Z, Wang L, Yao R, Gui X, Xiang F, Ji Y. 2022. Impacts of Drought and Climatic Factors on Vegetation Dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sensing, 14(4): 930.
15. Karnieli A, Agam N, Pinker R.T, Anderson M, Imhoff M.L, Gutman G.G. Goldberg A. 2010. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of climate, 23(3): 618-633.
16. Kocaaslan S, Musaoğlu N, Karamzadeh S. 2021. Evaluating Drought Events by Time-Frequency Analysis: A Case Study in Aegean Region of Turkey. IEEE Access, 9, 125032-125041.
17. Kogan F.N. 1990. Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11(8): 1405-1419.
18. Kogan F.N. 1995. Application of vegetation index and brightness temperature for drought detection. Advances in space research, 15(11): 91-100.
19. Kundu A, Dwivedi S, Dutta D. 2016. Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arabian Journal of Geosciences, 9(2): 144.
20. Le Hung T, Hoai D.K. 2015. Drought risk evaluation using remote sensing: a case study in BAC Binh District, Binh Thuan Province. Scientific Journal of Ho Chi Minh Educational University.
21. Magee T.K, Ringold P.L, Bollman M.A. 2008. Alien species importance in native vegetation along wadeable streams, John Day River basin, Oregon, USA. Plant Ecology, 195(2): 287-307.
22. Mansourmoghaddam M, Rousta I, Zamani M, Mokhtari M.H, Karimi Firozjaei M, Alavipanah S.K. 2022. Study and prediction of land surface temperature changes of Yazd city: assessing the proximity and changes of land cover. RS and GIS for Natural Resources, 12(4): 1-27. (In Persian).
23. Mutti P.R, Lúcio P.S, Dubreuil V, Bezerra B.G. 2020. NDVI time series stochastic models for the forecast of vegetation dynamics over desertification hotspots. International Journal of Remote Sensing, 41(7): 2759-2788.
24. Pei F, Wu C, Liu X, Li X, Yang K, Zhou Y, Xia G. 2018. Monitoring the vegetation activity in China using vegetation health indices. Agricultural and Forest Meteorology, 248: 215–227.
25. Quiring S.M, Ganesh S. 2010. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150(3): 330-339.
26. Rayegani B, Zehtabian G, Azarnivand H, Khajedin S.J, Alavipanah S.K. 2014. Survey of vegetation degradation in the East of Esfahan using Lada model. Journal of rangeland and watershed management, 67(2): 233-252.
27. Sadeghi Ravesh M.H. Khosravi. H. 2020. Analysis of the Alternatives to Combat Desertification Derived from the Decision-Making Models Using the Social Choice Functions (Case Study of Khezerabad Region in Yazd Province). J. Env. Sci. Tech., 22(4): 227-239.
28. Tran. H.T, Campbell J.B, Tran T.D, Tran H.T. 2017. Monitoring drought vulnerability using multispectral indices observed from sequential remote sensing (Case Study: Tuy Phong, Binh Thuan, Vietnam). GIScience & Remote Sensing, 54(2): 167-184.
29. UNCCD. 2012. United Nations Convention to Combat Desertification. Www.unccd.int (accessed 16.05.2013)
30. Zhu X, Leung K.H, Li W.S, Cheung L.K. 2019. Monitoring interannual dynamics of desertification in Minqin County, China, using dense Landsat time series. International Journal of Digital Earth, 1-13.