Evaluation of floodplains using Sentinel-1 images to locate safe points(Case study: Chabahar and Konarak counties)
Subject Areas : Applications in natural hazard and disasterzohreh salehinezhad 1 , seyed ali alhoseini almodaresi 2 *
1 - MSc. Remote Sensing and Geographical Information System, Faculty of Engineering, Islamic Azad University of Yazd, Yazd, Iran
2 - Professor
Keywords: Evaluation of flooded areas, Sentinel Series 1 radar images, GIS, stochastic forest algorithm, fuzzy logic, Algebraic algorithm,
Abstract :
Sistan and Baluchestan provinces, including the coastal cities of Chabahar and Konarak, have long been exposed to natural hazards, including floods. The main purpose of this study is to evaluate the flooded areas and determine the location and extent of the areas that have suffered the most flood damage in January 2017 in Chabahar and Konarak counties. Due to climate change such as heavy rainfall and using Sentinel-1 satellite images in the two time periods before and after the accident, based on the analysis and processing of images in SNAP software, the Sigma zero scattering coefficient of both images was extracted and divided into two levels of water and others. The water was separated and the threshold of 0.01 was obtained. Using the algebraic algorithm of water and non-water binary images in the form of zero and one and based on the difference between the two images, the flooded area was identified. The flooded areas were then classified using a random forest algorithm with a kappa coefficient of 0.91. Indicates the high accuracy of the classification. After preparing the map of flooded areas to locate safe points of value in Expert choice software based on the studied criteria which include (river area, structure, direction, width of communication network, and slope of the study area) and using fuzzy logic of 0.9 gammas in the environment Arc GIS10.6 software is discussed. The obtained results have determined the area of nearly 426.46 square kilometers of areas affected by floods, which have the most damage and destruction of urban and rural land use, agriculture and animal husbandry and blocking the communication routes of most villages, as well as mapping safe areas for air, sea and land services.
1. Ahmed, C. F. and Kranthi, N. 2018. Flood vulnerability assessment using geospatial techniques: Chennai, India. Indian Journal of Science and Technology. 11(6): 215-223. doi:https://doi.org/10.17485/just/2018/v11i6/110831, February 2018
2. Baharvand S, Suri S, and Rahnmarad J. 2017. Zoning of environmental hazards of landslides, earthquakes, floods, and erosion using the fuzzy hierarchical method.Case study: Wark Basin. Journal of RS and GIS for Natural Resources,8 (3): 89-103. doi:https://doi.org/10.1007/s11104-009-0053-7. (In Persian)
3. Bangira, T. Iannini, L. Menenti, M. Van Niekerk, A. & Vekerdy, Z. (2021). Flood Extent Mapping in the Caprivi Floodplain Using Sentinel-1 Time Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5667-5683. doi:https://doi.org/10.1109/JSTARS.2021.3083517
4. Borah, S. B. Sivasankar, T. Ramya, M. N. S. & Raju, P. L. N. 2018. Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environmental monitoring and assessment. 190(9): 520. doi:https://doi.org/10.1007/s10661-018-6893-y
5. Barasa, B. & Wanyama, J. (2020). Freshwater lake inundation monitoring using Sentinel-1 SAR imagery in Eastern Uganda. Annals of GIS, 26(2), 191-200. doi:https://doi.org/10.1080/19475683.2020.1743754
6. Carreño Conde, F. & De Mata Muñoz, M. (2019). Flood monitoring based on the study of Sentinel-1 SAR images: The Ebro River case study. Water, 11(12), 2454. doi:https://doi.org/10.3390/w11122454
7. Dadhich, G. Miyazaki, H. & Babel, M. 2019. Applications of sentinel-1 synthetic aperture radar imagery for floods damage assessment: A case study of Nakhon Si Thammarat, Thailand. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. 1927-1931. doi:https://doi.org/10.5194/users-archives-XLII-2-W13-1927-2019
8. DTottori, F, Szewczyk, W. Ciscar, J. C. Zhao, F. Alfieri, L. Hirabayashi, Y. and Feyen, L.: Increased human and economic losses from river flooding with anthropogenic warming, Nat. Clim. Change, 8, 781–786, . doi:https://doi.org/10.1038/s41558-018-0257-z, 2018.
9. Elkhrachy, I. Pham, Q. B. Costache, R. Mahajan, M. Rahman, K. U. Shahabi, H. ... & Anh, D. T. (2021). Sentinel‐1 remote sensing data and Hydrologic Engineering Centres River Analysis System two‐dimensional integration for flash flood detection and modeling in New Cairo City, Egypt. Journal of Flood Risk Management, 14(2), e12692 . doi:https://doi.org/10.1111/jfr3.12692
10. Gaya, C. O. (2020). Application of GIS and Remote Sensing in Flood Management in the Lake Victoria Basin (Doctoral dissertation, JKUAT-COETEC). http://localhost/xmlui/handle/123456789/5264
11. Grimaldi S. Li Y. Pauwels V.R.N. & Walker J.P. Remote sensing-derived water extent and levels to constrain hydraulic flood forecasting models: opportunities and challenges. Surv Geophys 2016, 37, (5), 977–1034. . doi:https://doi.org/10.1007/s10712-016-9378-y.
12. Horning, N. 2010. Random Forests: An algorithm for image classification and generation of continuous fields data sets. In Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Osaka, Japan. 911. doi:https://doi.org/10.5194/ISPRSARCHIVES-XXXIX-B7-203-2012
13. Lindersson, S. Brandimarte, L. Mård, J. & Di Baldassarre, G. (2020). A review of freely accessible global datasets for the study of floods, droughts, and their interactions with human societies. Wiley Interdisciplinary Reviews: Water, 7(3), e1424. doi:https://doi.org/10.1002/wat2.1424
14. Nardi, F. Annis, A. Di Baldassarre, G. Vivoni, E. R. and Grimaldi, S.: GFPLAIN250m, a global high-resolution dataset of Earth's floodplains, Scient. Data, 6, 180309 . doi:https://doi.org/ /10.1038/sdata.2018.309, 2019.
15. Olen, S. and Bookhagen, B. 2018. Mapping damage-affected areas after natural hazard events using sentinel-1 coherence time series. Remote Sensing. 10(8): 1272. doi:https://doi.org/ /10.3390/rs10081272
16. Rudner, T. G. Rußwurm, M. Fil, J. Pelich, R. Bischke, B. Kopačková, V. & Biliński, P. (2019, July) Multi3Net: segmenting flooded buildings via fusion of multiresolution, multisensor, and multitemporal satellite imagery. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 702-709). doi:https://doi.org/10.1609/AAAI.v33i01.3301702
17. Tavus, B. Kocaman, S. Gokceoglu, C. and Nefeslioglu, H. A. 2018. Considerations on the use of sentinel-1 data in flood mapping in urban areas: Ankara (Turkey) 2018 Floods. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. 575-581. doi:https://doi.org/10.5194/users-archives-XLII-5-575-2018
18. Twelve, A. Cao, W. Plank, S. and Martinis, S. 2016. Sentinel-1-based flood mapping: a fully automated processing chain. International Journal of Remote Sensing. 37(13): 2990-3004. doi:https://doi.org/ /10.1080/01431161.2016.1192304
19. Uddin, K. & Matin, M. A. (2021). Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology. Progress in disaster science, 11, 100185. . doi:https://doi.org/ 10.1016/j.pdisas.2021.100185
20. Ulloa, N. I. Yun, S. H. Chiang, S. H. & Furuta, R. (2022). Sentinel-1 Spatiotemporal Simulation Using Convolutional LSTM for Flood Mapping. Remote Sensing, 14(2), 246.. doi:https://doi.org/10.3390/rs14020246
21. Winsemius, H. C. Aerts, J. C. J. H. van Beek, L. P. H. Bierkens, M. F. P. Bouwman, A. Jongman, B. Kwadijk, J. C. J. Ligtvoet, W. Lucas, P. L. van Vuuren, D. P. and Ward, P. J.: Global drivers of future river flood risk, Nat. Clim. Change, 6, 381–385,2016.. doi:https://doi.org/10.1038/nclimate2893
22. Vanama, V. S. K. Mandal, D. & Rao, Y. S. (2020). GEE4FLOOD: rapid mapping of flood areas using temporal Sentinel-1 SAR images with Google Earth Engine cloud platform. Journal of Applied Remote Sensing, 14(3), 034505.. doi:https://doi.org/10.1117/1.JRS.14.034505
23. Valizadeh Kamran Kh, Dalir Hassan Nia R, Azari Amghani Kh. 2019. Flood zoning and its effect on the use of surrounding lands using UAV images and GIS. Journal of RS and GIS for Natural Resources. 10 (3): 59-75. DOI:. doi:https://doi.org/10.1007/s11104-009-0053-7. (In Persian)
24. Zali, Mehrab, Soleimani, Karim, Habibnejad Roshan, Mahmoud, ... & Mir Hassan. (2021). Comparison and prioritization of flooding in Nekarood sub-basins using the morphometric method in GIS. Remote sensing and GIS in natural resources. http://dorl.net/dor/20.1001.1.26767082.1401.13.2.2.2(In Persian)
25. Zhu, X. X. Tuia, D. Mou, L. Xia, G.S. Zhang, L. Xu, F. and Fraundorfer, F. 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine 5(4):8–36. doi:https://doi.org/10.1109/MGRS.2017.2762307
26. Zhang, L. Zhang, L. and Du, B. 2016. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine 4:22–40 doi:https://doi.org/10.1109/MGRS.2016.2540798
27. Zhang, M. Chen, F. Liang, D. Tian, B. & Yang, A. (2020). Use of Sentinel-1 GRD SAR images to delineate flood extent in Pakistan. Sustainability, 12(14), 5784. doi:https://doi.org/10.3390/su12145784