Recreation suitability zoning in part of the Oman sea coast
Subject Areas : Geospatial systems developmentMalihe Erfani 1 , Nahid EhsanZadeh 2
1 - Assistant Professor, Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran
2 - Chabahar Agricultural Jihad Land Affairs Expert, Chabahar, Iran
Keywords: Analytical Hierarchy Process (AHP), Fuzzy, recreation, spatial zoning, Ecotourism,
Abstract :
Background and Objective Ecotourism activities lead to the development and environmental conservation if they performed on the basis of environmental potential and continue through appropriate exploitation and conservation of managed areas. Therefore, ecotourism is known as one of the kinds of sustainable tourism that with reasonable management is able to meet the protection and development goals. One of the most important management activities is zoning and spatial prioritization of suitable areas for tourism development. Suitable areas have the best status of predefined evaluation criteria. The selecting process of the appropriate zone involves two main steps typically; screening (identifying a limited number of candidate zones from a wide geographical area according to a range of criteria), and evaluation. Land evaluation is a process of predicting the potential use of land-based on its attributes. Due to the importance of zoning in tourism management, many studies have been done so far, but a review of studies conducted in Iran showed that coastlines have been less considered in such studies. Therefore, the present study intends to identify and prioritize suitable ecotourism areas in a part of the southern coasts of the country according to ecological and socio-economic resources. The present study is to investigate the capability and zoning of the eastern watershed of Chabahar Gulf with a coastal length of 47 km for coastal tourism and also to identify and select the most suitable areas based on their preference in terms of criteria. Materials and Methods At first, all possible criteria for land suitability evaluation for tourism development in the study area were selected according to the review of resources, and finally, using a questionnaire and Delphi method, the criteria were finalized. The identified evaluation criteria were in two forms of factor (continuous and discrete) and constraint as; Continuous factor criteria included; distance from the river, distance from the wetlands, distance from the mountains of Hezar-Dareh (Badlands), distance from the port and the pier, distance from historical and cultural centers, distance from specific vegetation, distance from the specific animal, distance from agricultural lands, distance from the natural fountain, distance from rocky shores, distance from sandy shores, distance from the road, distance from rural areas, and distance from urban areas. Discrete factor criterion included; vegetation and restriction criteria included; wetland backline, river backline, and shore backline. Evaluation criteria were identified, prepared, and mapped. Finally Merged using the multi-criteria evaluation method (MCE) and the weighted linear combination (WLC) approach. The weight of each factor criterion was obtained by the analytic hierarchy process (AHP) and all layers related to these criteria were standardized and dimensionless by the fuzzy method. The standardization of constraint criteria was performed by the Boolean method. Areas that have more than 70% suitability for the coastal ecotourism development and also have at least 9 hectares extension were identified as acceptable areas. These two filters were implemented by applying the Siteselect function. Results and DiscussionThe consistency ratio for the AHP were obtained 0.05, which is less than 0.1, therefore the weighting was done correctly. The filtered map (based on minimum area and minimum suitability) obtained from WLC showed that suitable areas for ecotourism development are along the coastline and mainly natural factors and spectacular geological attractions have been effective in this selection. The results of weighting the criteria show that rocky shores, sandy shores, and mountains of Hezar Dareh have the most weight among all operating criteria, which are respectively 0.19, 0.134, 0.12, and 0.09 and show the great attractiveness of these phenomena in attracting tourists from the experts' point of view. The resulting layer of overlay was classified into two favorable and unfavorable classes. The results showed that the appropriate places for potential tourism were 233 hectares and are located in seven zones along the coast. Zones 4, 5, 2, and 3 had more priority, respectively based on the statistical characteristics of desirability, as well as the superiority of landscape features, proximity to the sea, and the greater accessibility, also the well-known locations. The field study also showed that these areas are more visited by tourists, which indicates the validity of the method and criteria used. Zones 7, 1 and, 6 are also in the next priority, respectively, which need more management and planning in terms of access to increase the tourism suitability. These results show the role of socio-economic factors, especially infrastructure. Ignoring it will lead to the elimination of recreational use or the imposition of irreparable damage to the environment. Conclusion So far, our study area was less affected by accelerated development and its nature remains healthy. In this regard, allocating parts of the region to ecotourism landuse, if properly managed, can ensure the conservation of the environmental quality of the identification zones, because ecotourism is mentioned as the best policies of natural resources management which lead to the reduction of destructive factors and their sustainable protection, and on the other hand, by developing ecotourism sites and improving tourism facilities, the economic state of the tourist host community also improves. Among the identified zones, four zones 4, 5, 2, and 3 are suggested as the first priority for tourism planning respectively. Organizing, developing, and improving communication networks and roads in the region will increase the suitability of the region, especially zones 7, 1, and 6. Therefore, the development of communication networks and air transportation, maritime transportation, and Ground transportation and facilities and welfare and accommodation facilities needed by tourists are suggested, as well as maritime tourism tours to increase the region's attractiveness in attracting domestic and foreign tourists. Also, due to the high attraction of the mountains of Hezar-Dareh, which also have geological importance, it is suggested that parts of the study area be managed as a geological park or geopark. A more detailed study of the area is suggested to a spatial selection of coastal tourism activities with more comprehensive spatial information in the identified suitable areas in this study for future studies. http://dorl.net/dor/20.1001.1.26767082.1400.12.1.6.7
Ahmadi M, Faraji Darabkhani M, Ghanavati E. 2015. A GIS-based multi-criteria decision-making approach to identify site attraction for ecotourism development in Ilam Province, Iran. Tourism Planning & Development, 12(2): 176-189. doi:https://doi.org/10.1080/21568316.2014.913676.
Ahmadi Thani N, Babaei Kafaki S, Mataji A. 2011. Investigation of the possibility of ecological tourism activities from the ecological point of view in the forests of North Zagros using multi-criteria decision making, GIS and remote sensing. Land Use Planning, 3(4): 64-45. (In Persian).
AlgünDoğu G, Çamaşırcıoğlu E. 2016. Site selection for different recreational sport activities. IOSR Journal of Sports and Physical Education (IOSR-JSPE), 3(3): 6-11. doi:https://doi.org/10.9790/6737-03030611.
Ardakani T, DanehKar A, Karami M, Aghighi H, Erfani M. 2011. Chabahar golf zoning using multiple criteria decision for central recreation. Geographic Planning Space Quarterly Journal, 1(1): 1-20. http://gps.gu.ac.ir/m/article_5321.html. (In Persian).
Asadi M, Jahanbakhsh Asl S. 2015. Suitable sites for wind power plants constructed in East Azerbaijan using fuzzy- analytical hierarchy process (FAHP) method. Journal of RS and GIS for Natural Resources, 6(4): 95-109. (In Persian).
Beeco JA, Jeffrey CH, Matthew TJB. 2014. GPS Visitor Tracking and Recreation Suitability Mapping: Tools for understanding and managing visitor use. Landscape and Urban Planning, 127: 136-145. doi:https://doi.org/10.1016/j.landurbplan.2014.04.002.
Bunruamkaew K, Yuji M. 2011. Site suitability evaluation for ecotourism using GIS & AHP: A case study of surat Thani province, Thailand. Procedia - Social and Behavioral Sciences, 21: 269-278. doi:https://doi.org/10.1016/j.sbspro.2011.07.024.
Erfani M, Afrougheh S, Ardakani T, Sadeghi A. 2015. Tourism positioning using decision support system (case study: Chahnime—Zabol, Iran). Environmental Earth Sciences, 74(4): 3135-3144. doi:10.1007/s12665-015-4365-z.
Erfani M, Ardakani T, Sadeghi A, Pahlevanravi A. 2011. Sitting for intensive recreation in Chahnime zone (Zabol Township) using multicriteria decision system. Environmental Reaserches, 2(4): 41-50. http://www.iraneiap.ir/m/article_13040.html. (In Persian).
Fang Y. 2017. Site selection of ecotourism: a case study of Zhejiang province. International Journal of Innovative Science, Engineering & Technology, 4(3): 321-326. http://ijiset.com/vol324/v324s323/IJISET_V324_I303_346.pdf.
Hernandez CR, Eduardo Bello B, Guillermo Montoya G, Erin IJ. 2005. Social adaptation ecotourism in the Lacandon forest. Annals of Tourism Research, 32(3): 610-627. doi:https://doi.org/10.1016/j.annals.2004.08.005.
Jabir K, Arun Das S. 2014. Evaluation of recreational site selection and the prospects of recreational. International Journal of Environmental Sciences, 3(10): 17-21.
Jahani A, Makhdoom M, Fiqhi J, Etemad V. 2011. Land use planning for forest management for multiple use (harvesting, ecotourism and protection) (Case study: Patom district of Kheyrud forest). Town and Country Planning 3(5): 33-49. https://jtcp.ut.ac.ir/article_24709.html. (In Persian).
Kienast F, Barbara D, Barbara W, Yvonne W, Matthias B. 2012. GIS-assisted mapping of landscape suitability for nearby recreation. Landscape and Urban Planning, 105(4): 385-399. doi:https://doi.org/10.1016/j.landurbplan.2012.01.015.
Li W. 2004. Environmental management indicators for ecotourism in China's nature reserves: A case study in Tianmushan Nature Reserve. Tourism Management, 25(5): 559-564. doi:https://doi.org/10.1016/j.tourman.2003.06.001.
Makhdoum M. 2017. Fundamental of land use planning, vol 5. University of Tehran Press. 290 p.
Malczewski J. 2006. GIS‐based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20(7): 703-726. doi:https://doi.org/10.1080/13658810600661508.
Malczewski J, Rinner C. 2015. Multicriteria decision analysis in geographic information science. Springer. https://doi.org/10.1007/978-3-540-74757-4.
Masoodi M, Salman Mahiny A, Mohammadzadeh M, Mirkarimi SH. 2016. Optimization of recreational site selection using multi criteria evaluation and functional relationship diagram (Case study: Miankaleh wildlife sanctuary). Pollution, 2(2): 163-181. doi:https://doi.org/10.7508/pj.2016.02.006. (In Persian).
MirarabRazi J, Hassanzad Navrodi I, Ghajar I, Salahi M. 2020. Identifying optimal location of ecotourism sites by analytic network process and genetic algorithm (GA): (Kheyroud Forest). International Journal of Environmental Science and Technology, 17(5): 2583-2592. doi:10.1007/s13762-020-02633-z.
Nahuelhual L, Alejandra C, Paola L, Amerindia J, Mauricio A. 2013. Mapping recreation and ecotourism as a cultural ecosystem service: An application at the local level in Southern Chile. Applied Geography, 40: 71-82. doi:https://doi.org/10.1016/j.apgeog.2012.12.004.
Nisa Z. 2017. Potential site selection in ecotourism planning using spatial decision support tool. International Journal of Human Capital in Urban Management, 2(4): 251-258. doi:https://doi.org/10.22034/ijhcum.2017.02.04.001.
Siroosi H, Heshmati G, Salmanmahiny A. 2020. Can empirically based model results be fed into mathematical models? MCE for neural network and logistic regression in tourism landscape planning. Environment, Development and Sustainability, 22(4): 3701-3722. doi:https://doi.org/10.1007/s10668-019-00363-y.
Talebi M, Majnounian B, Makhdoum M, Abdi E, Omid M. 2020. Predicting areas with ecotourism capability using artificial neural networks and linear discriminant analysis (case study: Arasbaran Protected Area, Iran). Environment, Development and Sustainability. doi:10.1007/s10668-020-00964-y.
Tsaur S-H, Wang C-H. 2007. The evaluation of sustainable tourism development by analytic hierarchy process and fuzzy set theory: An empirical study on the Green Island in Taiwan. Asia Pacific Journal of Tourism Research, 12(2): 127-145. doi:https://doi.org/10.1080/10941660701243356.
Vahidnia HM, Alesheikh AA, Alimohammadi A. 2009. Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90(10): 3048-3056. doi:https://doi.org/10.1016/j.jenvman.2009.04.010.
Wu Y-Y, Wang H-L, Ho Y-F. 2010. Urban ecotourism: Defining and assessing dimensions using fuzzy number construction. Tourism Management, 31(6): 739-743. doi:https://doi.org/10.1016/j.tourman.2009.07.014.
Yan L, Gao BW, Zhang M. 2017. A mathematical model for tourism potential assessment. Tourism Management, 63: 355-365. doi:https://doi.org/10.1016/j.tourman.2017.07.003.
_||_Ahmadi M, Faraji Darabkhani M, Ghanavati E. 2015. A GIS-based multi-criteria decision-making approach to identify site attraction for ecotourism development in Ilam Province, Iran. Tourism Planning & Development, 12(2): 176-189. doi:https://doi.org/10.1080/21568316.2014.913676.
Ahmadi Thani N, Babaei Kafaki S, Mataji A. 2011. Investigation of the possibility of ecological tourism activities from the ecological point of view in the forests of North Zagros using multi-criteria decision making, GIS and remote sensing. Land Use Planning, 3(4): 64-45. (In Persian).
AlgünDoğu G, Çamaşırcıoğlu E. 2016. Site selection for different recreational sport activities. IOSR Journal of Sports and Physical Education (IOSR-JSPE), 3(3): 6-11. doi:https://doi.org/10.9790/6737-03030611.
Ardakani T, DanehKar A, Karami M, Aghighi H, Erfani M. 2011. Chabahar golf zoning using multiple criteria decision for central recreation. Geographic Planning Space Quarterly Journal, 1(1): 1-20. http://gps.gu.ac.ir/m/article_5321.html. (In Persian).
Asadi M, Jahanbakhsh Asl S. 2015. Suitable sites for wind power plants constructed in East Azerbaijan using fuzzy- analytical hierarchy process (FAHP) method. Journal of RS and GIS for Natural Resources, 6(4): 95-109. (In Persian).
Beeco JA, Jeffrey CH, Matthew TJB. 2014. GPS Visitor Tracking and Recreation Suitability Mapping: Tools for understanding and managing visitor use. Landscape and Urban Planning, 127: 136-145. doi:https://doi.org/10.1016/j.landurbplan.2014.04.002.
Bunruamkaew K, Yuji M. 2011. Site suitability evaluation for ecotourism using GIS & AHP: A case study of surat Thani province, Thailand. Procedia - Social and Behavioral Sciences, 21: 269-278. doi:https://doi.org/10.1016/j.sbspro.2011.07.024.
Erfani M, Afrougheh S, Ardakani T, Sadeghi A. 2015. Tourism positioning using decision support system (case study: Chahnime—Zabol, Iran). Environmental Earth Sciences, 74(4): 3135-3144. doi:10.1007/s12665-015-4365-z.
Erfani M, Ardakani T, Sadeghi A, Pahlevanravi A. 2011. Sitting for intensive recreation in Chahnime zone (Zabol Township) using multicriteria decision system. Environmental Reaserches, 2(4): 41-50. http://www.iraneiap.ir/m/article_13040.html. (In Persian).
Fang Y. 2017. Site selection of ecotourism: a case study of Zhejiang province. International Journal of Innovative Science, Engineering & Technology, 4(3): 321-326. http://ijiset.com/vol324/v324s323/IJISET_V324_I303_346.pdf.
Hernandez CR, Eduardo Bello B, Guillermo Montoya G, Erin IJ. 2005. Social adaptation ecotourism in the Lacandon forest. Annals of Tourism Research, 32(3): 610-627. doi:https://doi.org/10.1016/j.annals.2004.08.005.
Jabir K, Arun Das S. 2014. Evaluation of recreational site selection and the prospects of recreational. International Journal of Environmental Sciences, 3(10): 17-21.
Jahani A, Makhdoom M, Fiqhi J, Etemad V. 2011. Land use planning for forest management for multiple use (harvesting, ecotourism and protection) (Case study: Patom district of Kheyrud forest). Town and Country Planning 3(5): 33-49. https://jtcp.ut.ac.ir/article_24709.html. (In Persian).
Kienast F, Barbara D, Barbara W, Yvonne W, Matthias B. 2012. GIS-assisted mapping of landscape suitability for nearby recreation. Landscape and Urban Planning, 105(4): 385-399. doi:https://doi.org/10.1016/j.landurbplan.2012.01.015.
Li W. 2004. Environmental management indicators for ecotourism in China's nature reserves: A case study in Tianmushan Nature Reserve. Tourism Management, 25(5): 559-564. doi:https://doi.org/10.1016/j.tourman.2003.06.001.
Makhdoum M. 2017. Fundamental of land use planning, vol 5. University of Tehran Press. 290 p.
Malczewski J. 2006. GIS‐based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20(7): 703-726. doi:https://doi.org/10.1080/13658810600661508.
Malczewski J, Rinner C. 2015. Multicriteria decision analysis in geographic information science. Springer. https://doi.org/10.1007/978-3-540-74757-4.
Masoodi M, Salman Mahiny A, Mohammadzadeh M, Mirkarimi SH. 2016. Optimization of recreational site selection using multi criteria evaluation and functional relationship diagram (Case study: Miankaleh wildlife sanctuary). Pollution, 2(2): 163-181. doi:https://doi.org/10.7508/pj.2016.02.006. (In Persian).
MirarabRazi J, Hassanzad Navrodi I, Ghajar I, Salahi M. 2020. Identifying optimal location of ecotourism sites by analytic network process and genetic algorithm (GA): (Kheyroud Forest). International Journal of Environmental Science and Technology, 17(5): 2583-2592. doi:10.1007/s13762-020-02633-z.
Nahuelhual L, Alejandra C, Paola L, Amerindia J, Mauricio A. 2013. Mapping recreation and ecotourism as a cultural ecosystem service: An application at the local level in Southern Chile. Applied Geography, 40: 71-82. doi:https://doi.org/10.1016/j.apgeog.2012.12.004.
Nisa Z. 2017. Potential site selection in ecotourism planning using spatial decision support tool. International Journal of Human Capital in Urban Management, 2(4): 251-258. doi:https://doi.org/10.22034/ijhcum.2017.02.04.001.
Siroosi H, Heshmati G, Salmanmahiny A. 2020. Can empirically based model results be fed into mathematical models? MCE for neural network and logistic regression in tourism landscape planning. Environment, Development and Sustainability, 22(4): 3701-3722. doi:https://doi.org/10.1007/s10668-019-00363-y.
Talebi M, Majnounian B, Makhdoum M, Abdi E, Omid M. 2020. Predicting areas with ecotourism capability using artificial neural networks and linear discriminant analysis (case study: Arasbaran Protected Area, Iran). Environment, Development and Sustainability. doi:10.1007/s10668-020-00964-y.
Tsaur S-H, Wang C-H. 2007. The evaluation of sustainable tourism development by analytic hierarchy process and fuzzy set theory: An empirical study on the Green Island in Taiwan. Asia Pacific Journal of Tourism Research, 12(2): 127-145. doi:https://doi.org/10.1080/10941660701243356.
Vahidnia HM, Alesheikh AA, Alimohammadi A. 2009. Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90(10): 3048-3056. doi:https://doi.org/10.1016/j.jenvman.2009.04.010.
Wu Y-Y, Wang H-L, Ho Y-F. 2010. Urban ecotourism: Defining and assessing dimensions using fuzzy number construction. Tourism Management, 31(6): 739-743. doi:https://doi.org/10.1016/j.tourman.2009.07.014.
Yan L, Gao BW, Zhang M. 2017. A mathematical model for tourism potential assessment. Tourism Management, 63: 355-365. doi:https://doi.org/10.1016/j.tourman.2017.07.003.