Monitoring of vegetation changes in Karaj watershed using NDVI index and gradient analysis
Subject Areas : Geospatial systems developmentFatemeh Mohammadyari 1 , Mir mehrdad Mirsanjari 2 , Ardavan Zarandian 3
1 - PhD Student of Land use Planning Environment, Department of Natural Resources and Environment, Malayer University
2 - Assist. Prof. College of Environmental Science, Department of Natural Resources and Environment, Malayer University
3 - Assist. Prof. Research Group of Environmental Assessment and Risks, Research Center of Environmental and Sustainable Development (RCESD) Department of Environment, Tehran
Keywords: Gradient analysis, Normalized difference vegetation index (NDVI), Karaj watershed,
Abstract :
In the present study, vegetation changes in the Karaj watershed in 2006, 2011 and 2017 were investigated using the Normalized difference vegetation index (NDVI), the integration of land metrics and gradient analysis. After calculating the NDVI index, Then, two-section gradient analysis was designed in the direction of north-south and east-west. Then 6 metrics were calculated at two levels of class and landform using moving window design. The results of the comparison of the floor area showed that the highest increase in the area was done in lands with very good vegetation so that 5104 hectares (4%) have been enlarged. It is also the largest reduction in the area of excellent vegetation cover, which decreased by 4055 hectares (3%) during the studied period. The results of gradient analysis showed that the distribution pattern of vegetation in a three-year period is a cluster. The results of the analysis of both transects at the level of the land and the classes show that the average of mean distance from the nearest neighbor gradually increases during transects and the increase in total in 2017 compared to the initial year. This indicates an increase in the distance between the vertices of the same patch and the difficulty of communication between them, which is one of the signs of the disruption of the landscape.
احمدی، ا.، م. ر. طاطیان، ر. تمرتاش، ح. یگانه و ی. عصری. 1395. بررسی پوشش گیاهی اراضی شور حاشیه دریاچه ارومیه با استفاده از تصاویر ماهواره ای. سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(1): 1-12.
بیات، ر.، س. جعفری، ب. قرمز چشمه و ا. چرخابی. 1395. مطالعه تأثیر ریز گردها بر تغییرات پوشش گیاهی (مطالعه موردی: تالاب شادگان خوزستان). سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(2): 17-32.
پور هاشمی، س.، م. بروغنی، م. زنگه اسدی و ا. امیر احمدی. 1394. تحلیل ارتباط پوشش گیاهی بر وقوع تعداد گردوغبار استان خراسان رضوی با استفاده از سیستم اطلاعات جغرافیایی و سنجشازدور. سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 6(4): 33-45.
جعفری، ع. و ز. آرمان. 1393. پایش تغییرات پوشش گیاهی منطقه حفاظتشده جنگلی هلن و دلایل آن بر اساس تحلیل دو زمانه NDVI. مجله محیطزیست طبیعی-منابع طبیعی ایران، 67(4): 391-402.
جباریان امیری، ب. 1392. ارزیابی اثرات محیط زیستی. انتشارات دانشگاه تهران، 184 صفحه.
زبردست، ل.، ا. ر. یاوری، ا. صالحی و م. مخدوم. 1390. بررسی تغییرات ساختاری ناشی از جاده در پارک ملی گلستان در فاصله سال های 1366 تا 1389 با استفاده از متریک های اکولوژی سیمای سرزمین. پژوهش های محیط زیست، 2(4): 11-20.
میرسنجری، م.، م. و ف. محمدیاری. 1396. پایش تغییرات سیمای سرزمین با استفاده از تحلیل گرادیان مطالعه موردی (شهرستان بهبهان). مجله جغرافیا و پایداری محیط، 22: 83-96.
میرزایی، م.، ع. ریاحی بختیاری، ع. ماهینی، و م. غلامعلی فرد. 1392. بررسی تغییرات پوشش اراضی استان مازندران با استفاده از سنجههای سیمای سرزمین بین سالهای 1363-1389. مجله اکولوژی کاربردی، 2(4): 37-54.
محمدیاری، ف. ح. پورخباز، م. توکلی و ح. اقدر. 1393. تهیه نقشه پوشش گیاهی و پایش تغییرات آن با استفاده از تکنیک های سنجشازدور و سامانه اطلاعات جغرافیایی (مطالعه موردی: شهرستان بهبهان). فصلنامه اطلاعات جغرافیایی (سپهر)، 92(23): 23-34.
Alberti M, Marzluff JM. 2004. Ecological resilience in urban ecosystems: linking urban patterns to human and ecological functions. Urban Ecosystems, 7(3): 241-265.
Barbosa H, Kumar TL. 2016. Influence of rainfall variability on the vegetation dynamics over Northeastern Brazil. Journal of Arid Environments, 124: 377-387.
Batistella M, Robeson S, Moran EF. 2003. Settlement design, forest fragmentation, and landscape change in Rondônia, Amazônia. Photogrammetric Engineering & Remote Sensing, 69(7): 805-812.
Birtwistle AN, Laituri M, Bledsoe B, Friedman JM. 2016. Using NDVI to measure precipitation in semi-arid landscapes. Journal of Arid Environments, 131: 15-24.
Blaes X, Chomé G, Lambert M-J, Traoré PS, Schut AG, Defourny P. 2016. Quantifying fertilizer application response variability with VHR satellite NDVI time series in a rainfed smallholder cropping system of Mali. Remote Sensing, 8(6): 531.
Davies KP, Murphy RJ, Bruce E. 2016. Detecting historical changes to vegetation in a Cambodian protected area using the Landsat TM and ETM+ sensors. Remote Sensing of Environment, 187: 332-344.
Englund O, Berndes G, Cederberg C. 2017. How to analyse ecosystem services in landscapes-A systematic review. Ecological Indicators, 73: 492-504.
Gandhi GM, Parthiban S, Thummalu N, Christy A. 2015. NDVI: vegetation change detection using remote sensing and GIS–a case study of Vellore District. Procedia Computer Science, 57: 1199-1210.
Gillespie TW, Ostermann-Kelm S, Dong C, Willis KS, Okin GS, MacDonald GM. 2018. Monitoring changes of NDVI in protected areas of southern California. Ecological Indicators, 88: 485-494.
Li H, Wu J. 2004. Use and misuse of landscape indices. Landscape Ecology, 19(4): 389-399.
Li F, Song G, Liujun Z, Yanan Z, Di L. 2017. Urban vegetation phenology analysis using high spatio-temporal NDVI time series. Urban Forestry & Urban Greening, 25: 43-57.
Luck M, Wu J. 2002. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology, 17(4): 327-339.
McGarigal K, Cushman SA, Neel MC, Ene E. 2002. FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. 245 pp.
McGarigal K, Marks BJ. 1995. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen Tech Rep PNW-GTR-351 Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station 122 p, 351.
Nagendra H, Lucas R, Honrado JP, Jongman RH, Tarantino C, Adamo M, Mairota P. 2013. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33: 45-59.
Pettorelli N, Chauvenet AL, Duffy JP, Cornforth WA, Meillere A, Baillie JE. 2012. Tracking the effect of climate change on ecosystem functioning using protected areas: Africa as a case study. Ecological Indicators, 20: 269-276.
Tao Y, Li F, Liu X, Zhao D, Sun X, Xu L. 2015. Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecological Modelling, 318: 210-216.
Yu XJ, Ng CN. 2007. Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landscape and Urban Planning, 79(1): 96-109.
Wen Z, Wu S, Chen J, Lü M. 2017. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Science of the Total Environment, 574: 947-959.
Whittaker RH. 1967. Gradient analysis of vegetation. Biological Reviews, 42(2): 207-264.
Wu C, Peng D, Soudani K, Siebicke L, Gough CM, Arain MA, Bohrer G, Lafleur PM, Peichl M, Gonsamo A. 2017. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233: 171-182.
Xu Y, Yang J, Chen Y. 2016. NDVI-based vegetation responses to climate change in an arid area of China. Theoretical and Applied Climatology, 126(1-2): 213-222.
Zhang Z, Van Coillie F, De Clercq EM, Ou X, De Wulf R. 2013. Mountain vegetation change quantification using surface landscape metrics in Lancang watershed, China. Ecological Indicators, 31: 49-58.
_||_