Analysis of the Wildland–Anthropic Interface (WAI) Characteristics in Guilan Province, Northern Iran
Subject Areas :
1 - Department of Science and Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
Keywords: Land cover, Built-up structures, Wildfire risk, Dense wildlands.,
Abstract :
Wildland-Anthropic Interface (WAI) is the area where undeveloped wildland vegetation and built-up structures intermingle. Mapping WAI areas at fine scales is crucial for assessing wildfire exposure and defining appropriate fire risk mitigation strategies in these areas. This research aims to develop a method for mapping different WAI classes in Guilan province using geographic information systems (GIS) and remote sensing (RS). OpenStreetMap (OSM) building shapefiles from 2022 were used to provide spatial data of buildings, including building location maps and anthropic building density, along with the percentage of area covered by anthropic blocks. Furthermore, a land cover map (in 18 initial classes) prepared based on the classification of Landsat satellite images (Landsat-8 OLI/TIRS L1TP) in 2021 was used, which was reclassified to a map of four main land cover classes (Rural, Forest, Non-Vegetated, and Water bodies) in the study area. In addition, areas with high wildfire risk (based on historical fires between 1992 and 2022) were identified by determining a 2-km buffer from dense and contiguous wildlands (with an area of >5 km2). These spatial data were integrated, and a 100-m raster map of WAI was obtained in four classes: Anthropic, Wildland-Anthropic (WA), Dispersed Anthropic (DA), and Non-Anthropic (NA). The total area and spatial distribution of WAI classes in Guilan province were obtained, and the differences between different municipalities were analyzed. The results showed that 6.6% of the province is covered as the anthropic class with moderate and high anthropic presence. 10.8% of the study area is classified as the WA class, of which 6% is distributed as WA-Interface and 4.8% as WA-Intermix. About 53% of the study area is classified as the DA class, which is distributed in Non-Vegetated, forest, and rural areas. In contrast, 29% of the study area is classified as the NA class (including Non-Vegetated, forest, rural, and water bodies). Characterizing WAI areas is crucial for land and wildfire policy and management, but it is usually determined by the spatial connections between residential development and natural vegetation, overlooking fire risk. This research introduces a novel methodological framework for defining WAI areas through fire risk assessment, which helps guide land management decisions and wildfire prevention strategies. This research suggests investigating the trends and magnitude of changes in WAI areas in the Hyrcanian regions of northern Iran and emphasizes the need to identify measures that can be taken to address the growth of WAI and mitigate the related wildfires risk.
جانبزرگی، محمد؛ حنیفهپور، مهین؛ خسروی، حسن (1400). تغییرات زمانی خشکسالی هواشناسی- هیدرولوژیکی (مطالعه موردی: استان گیلان). مدلسازی و مدیریت آب و خاک. 1 (2)، 13-1. https://doi.org/10.22098/mmws.2021.1215
جهدی، رقیه؛ مسیحپور، مهرنوش (1404). مدلسازی مبتنی بر احتمال برای تحلیل کمی ریسک آتشسوزی در مناطق حفاظت شده استان گیلان. مدلسازی و مدیریت آب و خاک. 5 (1)، 265-282. https://doi.org/10.22098/mmws.2025.16219.1518
جهدی، رقیه؛ الحاج خلف، محمد واثق (1403). مدلسازی ریسک آتشسوزی با استفاده از روشهای سنجشازدور و شبیهسازی رفتار آتش در استان گیلان. جغرافیا و مخاطرات محیطی. 13 (4)، 102-129. https://doi.org/10.22067/geoeh.2024.86597.1462
وزارت منابع طبیعی و جنگلداری، انتاریو، کانادا (2014). کتابچه راهنمای مرجع ارزیابی و کاهش ریسک آتشسوزی جنگل-در حمایت از بیانیه سیاست استانی. ترجمه رقیه جهدی. اردبيل: انتشارات دانشگاه محقق اردبیلی.
یوسفی ماتک، حمیدرضا و ديگران (1402). آیندهپژوهی تأثیر مهاجرت از فلات مرکزی به استان گیلان بر اجرای طرحهای جامع و توسعه شهری و روستایی. آینده پژوهی ایران. 8 (2)، 270-296. https://doi.org/10.30479/jfs.2024.19112.1492
Ager, A. et al (2019). Wildfire exposure to the wildland urban interface in the western US. Applied Geography. 111, 102059. https://doi.org/10.1016/j.apgeog.2019.59
Alcasena, F.J.; Evers, C.R. & Vega-Garcia, C. (2018). The wildland-urban interface raster dataset of Catalonia. Data Brief. 17, 124-128. https://doi.org/10.1016/j.dib.2017.12.066
Alipour, H. et al (2017). Second home tourism impact and governance: Evidence from the Caspian Sea region of Iran. Ocean & Coastal Managment. 136, 165-176. https://doi.org/10.1016/j.ocecoaman.2016.12.006
Argañaraz, J.P. et al (2017). Assessing wildfire exposure in the Wildland-Urban Interface area of the mountains of central Argentina. Journal of Evironmental Management. 196, 499–510. https://doi.org/10.1016/j.jenvman.2017.03.058
Bar-Massada, A. et al (2023). The wildland – urban interface in Europe: Spatial patterns and associations with socioeconomic and demographic variables. Landscape and Urban Planning. 235, 104759. https://doi.org/10.1016/j.landurbplan.2023.104759
Bar-Massada, A. (2021). A comparative analysis of two major approaches for mapping the wildland-urban interface: a case study in California. Land. 10 (7), 679. https://doi.org/10.3390/land10070679
Bar-Massada, A. et al (2013). Using structure locations as a basis for mapping the wildland urban interface. Journal of Environmental Management. 128, 540–547. https://doi.org/10.1016/j.jenvman.2013.06.021
Bruno, B. et al (2024). Mapping the wildland-urban interface at municipal level for wildfire exposure analysis in mainland Portugal. Journal of Environmental Management. 368, 122098. https://doi.org/10.1016/j.jenvman.2024.122098
Calkin, D.; Price, O. & Salis, M. (2020). WUI Risk Assessment at the Landscape Level. Manzello, S.L. (eds). Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Cham: Springer. https://doi.org/10.1007/978-3-319-52090-2_97
Carlson, A.R. et al (2022). The wildland–urban interface in the United States based on 125 million building locations. Ecological Applications. 32 (5), e2597. https://doi.org/10.1002/eap.2597
Chen, B. et al (2024). Wildfire risk for global wildland–urban interface areas. Nature Sustainability. 7 (4), 1-11. https://doi.org/10.1038/s41893-024-01291-0
Christ, S.; Schwarz, N. & Sliuzas, R. (2022). Wildland urban interface of the City of Cape Town 1990–2019. Geographical. Research. 60 (3), 395-413. https://doi.org/10.1111/1745-5871.12535
Del Giudice, L. et al (2021). The wildland-anthropic interface raster data of the Italy-France maritime cooperation area (Sardinia, Corsica, Tuscany, Liguria, and Provence-Alpes-Côte d’Azur). Data Brief. 38 (21), 107355. https://doi.org/10.1016/j.dib.2021.107355
Ganatsas, P.; Oikonomakis, N. & Tsakaldimi, M. (2022). Small-scale analysis of characteristics of the wildland–urban interface area of Thessaloniki, Northern Greece. Fire. 5(5), 159. https://doi.org/10.3390/fire5050159
Filkov, A.I. et al (2020). Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. Journal of Safety Science and Resilience. 1 (1), 44–56. https://doi.org/10.1016/j.jnlssr.2020.06.009
Gonzalez, S. & Ghermandi, L. (2024). How to define the wildland-urban interface? Methods and limitations: towards a unified protocol. Frontiers in Environmental Science. 11, 1284631. https://doi.org/10.3389/fenvs.2023.1284631
Guo, Y. et al (2024). Global expansion of wildland-urban interface intensifies human exposure to wildfire risk in the 21st century. Science Advances. 10 (45), eado9587. https://doi.org/10.1126/sciadv.ado9587
Hantson, H. et al (2022). Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nature Communication. 13, 2717. https://doi.org/10.1038/s41467-022-30030-2
Jiang, F. et al (2025). Methodology for wildland–urban interface mapping in anning city using high-resolution remote sensing. Land. 14 (6), 1141. https://doi.org/10.3390/land14061141
Li, S. et al (2022). Mapping the wildland-urban interface in California using remote sensing data. Scientific Report. 12, 5789. https://doi.org/10.1038/s41598-022-09707-7
National Wildfire Coordinating Group (NWCG) (2018). Glossary of Wildland Fire Terminology. National Wildfire Coordinating Group) Available at https://www.nwcg.gov/glossary/a-z
Radeloff, V.C. et al (2005). The wildland–urban interface in the United States. Ecological Applications. 15 (3), 799–805. https://doi.org/10.1890/04-1413
Radeloff, V.C. et al (2018). Rapid growth of the US wildland–urban interface raises wildfire risk. Proceedings of the National Academy of Sciences. 115, 3314–3319. https://doi.org/10.1073/pnas.1718850115
Millward, H. (2002). Peri-urban residential development in the Halifax region 1960–2000: Magnets, constraints, and planning policies. Canadian Geographer-Geographe Canadien. 46 (1), 33-47. https://doi.org/10.1111/j.1541-0064.2002.tb00729.x
Oliveira, S.; Rocha, J. & Sá, A. (2021). Wildfire risk modeling. Health. 23, 100274. https://doi.org/10.1016/j.coesh.2021.100274
Pandey, P. et al (2023). A global outlook on increasing wildfire risk: Current policy situation and future pathways. Trees, Forests and People. 14 (42), 100431. https://doi.org/10.1016/j.tfp.2023.100431
Salis, M. et al (2022). Spatial patterns and intensity of land abandonment drive wildfire hazard and likelihood in Mediterranean Agropastoral areas. Land. 11 (11), 1942. https://doi.org/10.3390/land11111942
Sanucci, C.; Gonzalez, S. & Ghermandi, L. (2022). Mapping the wildland-urban interface from houses location and terrain slope in Patagonia, Argentina. Environmental Sciences Proceedings. 22 (1), 14. https://doi.org/10.3390/IECF2022-13041
Schug, F. et al (2023). The global wildland–urban interface. Nature. 621, 94–99. https://doi.org/10.1038/s41586-023-06320-0
The Openstreetmap data files (2022). Europe. https://www.geofabrik.de/. (accessed 23 October 2022).
Taylor, L. (2011). No boundaries: exurbia and the study of contemporary urban dispersion. Geo Journal. 76 (4), 323–339. https://doi.org/10.1007/s10708-009-9300-y
U.S. Fire Administration (2025). What Is the WUI? Available at: https://www.usfa.fema.gov/ (Accessed March 15, 2025).