Permeability Estimation Using Clustering, Artificial Neural Network and Fuzzy Logic Method in Bangestan Carbonate Reservoir
Subject Areas :
Keywords: Permeability estimation, Clustering, Fuzzy logic, Arrtificial nural network, Bangestan reservoir,
Abstract :
Permeability is one of the most important parameters of reservoir rock. The calculation of this parameter is obtained from the analysis of drilling cores, but since not all wells are coreed and the core data is not available continuously along the reservoir. The estimation of this parameter is done through petrophysical logs. There are different methods for estimating the permeability of logs, and a number of these methods were used in this study. The studied interval is Bangestan reservoir for which permeability in 4 wells was estimated. In all studied wells (A, B, C and D) petrophysical log data were available that in addition to log data in well A, there was also core permeability data. As a result, using MRGC, AHC, DC and SOM clustering methods, as well as artificial neural network and fuzzy logic, permeability was estimated in different models and calibrated with core permeability data. The coefficient of correlation coefficient between the estimated permeability in all models was evaluated in different methods to finally determine the best method with the highest rate (CC). As a result, the dynamic clustering method with a correlation coefficient of 0.8479 had the best estimate in the reservoir studied in well A that the model in this method had 16 clusters. Finally, this model was applied in all studied wells to obtain permeability in the studied interval in wells without core. Also, the fuzzy logic method with a correlation coefficient of 0.7037 was introduced as the weakest method in this study.
- کدخدائی ایلخچی، ع.، رضائی، م.ر.، معلمی، س.ع.، شیخ زاده، ا.، (1384). تخمین گونه های سنگی و تراوایی در میدان گازی پارس جنوبی با استفاده از تکنیک خوشهسازی میان مرکز فازی و مدلسازی فازی. نهمین همایش انجمن زمین شناسی ایران، دانشگاه تربیت معلم تهران، ص۶۹۰- ۶۷۸.
- سروش نیا، م.، کدخدائی ایلخچی، ع.، نوری، ب.، (1391). بررسی روشهای خوشهسازی در تعیین الکتروفاسیسها و نیز میکروفاسیسهای مخزنی با استفاده از اطلاعات پتروفیزیکی و پتروگرافی در سازند آسماری در یکی از میادین نفتی خلیج فارس. سی و یکمین گردهمایی علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور ص. 101 – 123.
- باقری، ح و فضلی، ل.، (1392). ارزیابی پتروفیزیکی مخازن هیدروکربوری به روش قطعی و احتمالی، انتشارات ستایش، چاپ اول، 210 ص.
- نقدی، س، معلمی، س.ع. و خوشبخت، ف.، (1393). تخمین نفوذپذیری دریک مخزن کربناته با استفاده از تکنیکهای خوشهبندی و مقایسه نتایج با سایر روشهای رایج، پایاننامه کارشناسی ارشد، دانشگاه علوم و تحقیقات تهران.176 ص.
- آقانباتی، س.ع.، (1385)، زمینشناسی ایران، چاپ دوم، انتشارات سازمان زمینشناسی کشور.750 ص.
- Azizzadeh, M.O.B., Mohebian, R., Bagheri, H., Mahdavi Hezaveh, A., Khan Mohammadi, A., (2024). Toward Real-Time Fracture Detection on Image Logs Using Deep Convolutional Neural Networks, Yolov5. Interpretation 12 (2), 1-10. https://doi.org/10.1190/int-2022-0104.1.
- Mohaghegh, S., Balan, B. and Ameri, S., (1997). Permeability Determination from Well Log Data, SPE formation evaluation.
- Kadkhodaie-Ilkhchi, A., and Amini, A., (2009). A fuzzy logic approach to estimating hydraulic flow units from well log data: A case study from the Ahwaz Oilfield: south Iran: J. Pet. Geol. v. 32, p. 67-78.
- Gholizadeh, M.H., & Darand, M., (2009). Forecasting precipitation with artificial neural networks (case study: Tehran). Journal of Applied Sciences, 5: 23-32.
- Khoshbakht M, Baghaie Lakeh M, Hasavari F, Kazemnejad leili E, Blourchian M. (2010). Evaluation of Body posture Ergonomyic during work in intensive care units nurses in teaching hospitals of Guilan University of Medical Sciences in Rasht city in . J Holist Nurs Midwifery. 21 (1) :22-29.
- Alizadeh, B., Najjari, S., & Kadkhodaei-Ilkhchi, A., (2012). Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran. Computers & Geosciences, Elsevier Press. 45: 261–269.
- Sefidari, E., Amini, A., Kadkhodaei, A., & Ahmadi, B., (2012). Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf, Geopersia, 2 (2): 11-23.
- James, G.A., Wynd, J. G., (1965). Stratigraphic nomenclature of the Iranian oil Consorcium agreement area, Iranian oil operating companies geological and exploration division, PP.1-86.
- Trauth, M. H., Maslin, M. A., Deino, A. L., Strecker, M. R., Bergner, A. G., & Dühnforth, M. (2007). High-and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. Journal of Human Evolution, 53(5), 475-486.
- Kohonen, T., (2001). Self-Organizing Maps. Third, extended edition. Springer, 501 p.
- Ye S. J. and Rabiller P., (2000). A New Tool for Electro-Facies Analysis: Multi-Resolution Graph-Based Clustering, SPWLA.
- Lukasova, A. (1979). "Hierarchical Agglomerative Clustering Procedure", Pattern Recognition, v. 1, pp. 365-381.
- Khoshbakht, F., & Mohammadnia, M. (2010). Assessment of clustering methods for predicting permeability in a heterogeneous carbonate reservoir. In 4th EAGE St. Petersburg International Conference and Exhibition on Geosciences-New Discoveries through Integration of Geosciences (pp. cp-156). European Association of Geoscientists & Engineers.
- Bagheri, H., Khoshbakht, F., Fazli, L., (2015). Electro-facies determined based on sedimentary facies and rock types using clustering methods, wire-line logs and core data in the Kangan and Dalan Formations. Southern Pars gas field. Sedimentary Facies 7(2), 178 195. https://doi.org/10.22067/sed.facies.v7i2.23589
- Bagheri, H., Rahimibahar, A.A., (2015). Using Log Clustering to Zone Fahliyan Limestone Formation Reservoir in One of Iran Southwest Reservoirs. Journal of Petroleum Research 25(82), 45-55. https://doi.org/10.22078/pr.2015.515
- Bagheri, H., Khoshbakht, F., (2015). Determining Pay Zone Using Clustering of Petro-physical Log Data and Cut-off Methods in a Carbonate Gas Reservoir. Journal of Petroleum Research 25(81), 97-111. https://doi.org/10.22078/pr.2015.496
- Bagheri, H., Mohebian, R., Moradzadeh, A., Olya, B.A.M., (2024). Pore Size Classification and Prediction Based on Distribution of Reservoir Fluid Volumes Utilizing Well Logs and Deep Learning Algorithm in a Complex Lithology. Artificial Intelligence in Geosciences 5, 100094. https://doi.org/10.1016/j.aiig.2024.100094
- Khoshbakht, F., & Mohammadnia, M., (2012). Assessment of Clustering Methods for Predicting Permeability in a Heterogeneous Carbonate Reservoir. Journal of Petroleum Science and Technology, 2 (2): 50-57.
- Zargar, Gh., AyatizadehTanha, A., Parizad, A.H., Amouri, M. and Bagheri, H., (2020) Reservoir Rock Properties Estimation Based on Conventional and NMR log Data Using ANN-Cuckoo: A Case Study in One of Super Fields in Iran Southwest, Journal of Petroleum, Vol. 6, Issue 3, 304-310.
- Mohebian, R., Bagheri, H., Kheirollahi, M., Bahrami, H., (2021). Permeability Estimation Using an Integration of Multi-Resolution Graph-Based Clustering Methods in an Iranian Carbonate Reservoir. Journal of Petroleum Science and Technology 11(3), 49-58. https://doi.org/10.22078/jpst.2022.4737.1785.
- Rezaeeparto, K., Bagheri, H., (2023). Prediction of Total Organic Carbon (TOC) Utilizing ΔlogR and Artificial Neural Network (ANN) Methods and Geochemical Facies Determination of Kazhdumi Formation in One of the Fields - Southwest of Iran. Advanced Applied Geology 12(4), 732-746. https://doi.org/10.22055/AAG. 2021.35538.2177.
- Nikravesh, M., & Aminzadeh, F. (2001). Past, present and future intelligent reservoir characterization trends. Journal of Petroleum Science and Engineering, 31(2-4), 67-79.
- Bagheri, H. and Falahat, R., (2021). Fracture permeability estimation utilizing conventional well logs and flow zone indicator, Petroleum Research, https://doi.org/10.1016/j.ptlrs.2021.11.004.
- Bagheri, H., Tanha, A.A., Dolati-Ardehjani, F., Heydari-Tajereh, M. and Larki, E., (2021). Geomechanical Model and Wellbore Stability Analysis Utilizing Acoustic Impedance and Reflection Coefficient in a Carbonate Reservoir, Journal of Petroleum Exploration and Production Technology, 11, 3935–3961.
- Tanha, A.A., Pirzad, A.H., Shahbazi, KH., Bagheri, H., (2022). Investigation of Trend Between Porosity and Drilling Parameters in one of the Iranian Undeveloped Major Gas Fields. Petroleum Research 8 (1), 63-70. https://doi.org/10.1016/j.ptlrs.2022.03.001.