The effect of age on cerebellar function and cognitive-behavioral function in the elderly
Subject Areas : HealthSoodabeh Zalaghi 1 , Mohammad Azhdarloo 2 * , Ahmad Azhdarloo 3
1 - Master of Positive Psychology، Payame Noor University، Boroujerd، Iran. rozesefid1611@gmail.com
2 - (Corresponding author), Master of General Psychology، Islamic Azad University، Marvdasht Branch، Marvdasht، Iran. m.azhdarlo98@gmail.com
3 - Master of Clinical Psychology، Islamic Azad University، Firoozabad Branch، Firoozabad، Iran. ajdarlooahmad@gmail.com
Keywords: Age, Cerebellum, Cognitive-behavioral function,
Abstract :
Abstract Introduction: The role of the cerebellum in reducing the activities and cognitive and behavioral function of the elderly is very important and little research has been done in this field. The different functions of the cerebellum are very important in the brain structure of older people. Therefore، the aim of this study was to investigate the effect of age on cerebellar function and cognitive-behavioral function in the elderly. Research Method: To date، evidence has shown that there is a morphological difference between the cerebellum of individuals that over time and with increasing age، cognitive and motor behaviors affect individuals. Cerebellar morphology is better than the prefrontal cortex for predicting functions and performing tasks. To analyze his research، he analyzed brain cell connections and imaged nerve fibers. Results: The results showed that the cerebellum plays a very important role in reducing the performance of the elderly. In the study، a perceptual framework was used to influence the role of the cerebellum in the performance of individuals and the internal model was considered. Conclusion: Evidence showed that the cerebellum is affected by age and more research should be done in this field to be able to determine the role of the cerebellum in motor and cognitive control function at different ages.
1. Abe O., Yamasue H., Aoki S., Suga M., Yamada H., Kasai K., Masutani Y., Kato N., Kato N., Ohtomo K. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol, 2008; 29: 102–116.
2. Alexander، G. E. ، Chen، K. ، Merkley، T. L. ، Reiman، E. M. ، Caselli، R. J. ، Aschenbrenner، M. ، Santerre-Lemmon، L. ، Lewis، D. J. ، Pietrini، P. ، Teipel، S. J. ، Hampel، H. ، Rapoport، S. I. ، Moeller، J. R. ،2006. Regional network of magnetic resonance imaging gray matter volume in healthy aging. Neuroreport 17،951– 956.
3. Andersen B.B., Gundersen H.J.G., Pakkenberg B.. Aging of the human cere- bellum: a stereological study. J. Comp. Neurol, 2003; 466: 356–365.
4. Andersen K., Andersen B.B., Pakkenberg B. Stereological quantification of the cerebellum in patients with Alzheimer’s disease. Neurobiol. Aging, 2012; 33: 197e11–197e20.
5. Andrews-Hanna J.R., Snyder A.Z., Vincent J.L., Lustig C., Head D., Raichle M.E., Buckner R.L. Disruption of large-scale brain systems in advanced aging. Neuron, 2007; 56: 924–935.
6. Anguera J.A., Reuter-Lorenz P.A., Willingham D.T., Seidler R.D. Failure to engage spatial working memory contributes to age-related declines in visuo- motor learning. J. Cogn. Neurosci, 2011; 23: 11–25.
7. Ashburner J., Friston K.J. Voxel-based morphometry – the methods. Neu- reimage, 2000; 11: 805–821.
8. Bai F., Zhang Z., Watson D.R., Yu H., Shi Y., Yuan Y., Zang Y., Zhu C., Qian Y. Abnormal functional connectivity of hippocampus during episodic mem- ory retrieval processing network in amnestic mild cognitive impairment. Biol. Psychiatry, 2009; 65: 951–958.
9. Baldac Ara L., Guilherme J., Borgio F., André W., Luiz A., Lacerda T., Beatriz M., Macedo M., Tufik S., Bressan R.A., Ramos L.R., Jackowski A.P. Cere- bellar volume in patients with dementia (Volume cerebelar em pacientes com demência). Rev. Bras. Psiquiatr, 2010; 33: 122–129.
10. Ballanger B., Baraduc P., Broussolle E., Le Bars D., Desmurget M., Thobois S.. Motor urgency is mediated by the contralateral cerebellum in Parkinson’s dis- ease. J. Neurol. Neurosurg. Psychiatry, 2008; 79: 1110–1116.
11. Baudouin A., Vanneste S., and Pouthas V., Isingrini M. Age-related changes in duration reproduction: involvement of working memory processes. Brain Cogn, 2006; 62: 17–23.
12. Bennett I.J., Madden D.J., Vaidya C.J., Howard D.V., Howard J.H. Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum. Brain Mapp, 2010; 31: 378–390.
13. Bernard J.A., Peltier S.J., Wiggins J.L., Jaeggi S.M., Buschkuehl M., Fling B.W., Kwak Y., Jonides J., Monk C.S., Seidler R.D.. Disrupted cortico-cerebellar con- nectivity in older adults. Neuroimage, 2013; 83: 103–119.
14. Bernard J.A., Seidler R.D.. Evidence for motor cortex dedifferentiation in older adults. Neurobiol. Aging, 2012; 33: 1890–1899.
15. Bernard J.A., Seidler R.D., Hassevoort K.M., Benson B.L., Welsh R.C., Wiggins J.L., Jaeggi S.M., Buschkuehl M., Monk C.S., Jonides J., and Peltier S.J. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomi- cal and self-organizing map approaches. Front. Neuroanat, 2012; 6: 31.
16. Bernard J.A., Peltier S.J., Benson B.L., Wiggins J.L., Jaeggi S.M., Buschkuehl M., Jonides J., Monk C. S., Seidler R.D.. Dissociable functional networks of the human dentate nucleus. Cereb. Cortex; 2013
17. Bernard J.A., Seidler R.D.. Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum, 2013; 12: 721–737.
18. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S.. Functional connectivity in the motor cortex of resting. Magn. Reson. Med, 1995; 34: 537–541.
19. Chen S.H.A., Desmond J.E.. Temporal dynamics of cerebro-cerebellar net- work recruitment during a cognitive task. Neuropsychologia, 2005; 43:1227–1237.
20. Chen S.H.A., Desmond J.E.. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage, 2005; 24: 332–338.
21. Craik F.I., Hay J.F.. Aging and judgments of duration: effects of task complexity and method of estimation. Percept. Psychophys, 1999; 61: 549–560.
22. Curran T. Effects of aging on implicit sequence learning: accounting for sequence structure and explicit knowledge. Psychol. Res, 1997; 60:24–41.
23. Damoiseaux J.S., Beckmann C.F., Arigita E.J.S., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Rombouts S.A.R.B.. Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex, 2008; 18: 1856–1864.
24. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage, 2006; 33:127–138.
25. Diedrichsen J., Balsters J.H., Flavell J., Cussans E., Ramnani N.. A probabilistic MR Atlas of the human cerebellum. Neuroimage, 2009; 46: 39–46.
26. Dum R.P., Strick P.L. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol, 2009; 89: 634–639.
27. Eckert M.A., Keren N.I., Roberts D.R., Calhoun V.D., Harris K.C.. Age-related changes in processing speed: unique contributions of cerebellar and prefrontal cortex. Front. Hum. Neurosci, 2010; 4: 10.
28. Ferdon S., Murphy C.. The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study. Neuroimage, 2003; 20: 12–21.
29. Ferreira L.K., Busatto G.F.. Resting-state functional connectivity in normal brain aging. Neurosci. Biobehav. Rev, 2013; 37: 384–400.
30. Ferrucci R., Marceglia S., Vergari M., Cogiamanian F., Mrakic-Sposta S., Mameli F., Zago S., Barbieri S., Priori A.. Cerebellar transcranial direct current stimu- lation impairs the practice-dependent proficiency increase in working memory. J. Cogn. Neurosci, 2008; 20: 1687–1697.
31. Ferrucci R., Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage, 2013: 1–6.
32. Fjell A.M., Westlye L.T., Grydeland H., Amlien I., Espeseth T., Reinvang I., Raz N., Holland D., Dale A.M., Walhovd K.B.. Critical ages in the life course of the adult brain: nonlinear subcortical aging, Neurobiol. Aging, 2013; 34: 2239–2247.
33. Heuninckx S., Wenderoth N., Swinnen S.P. System's neuroplasticity in the aging brain: recruiting additional neural resources for successful motor perfor- mance in elderly persons. J. Neurosci, 2008; 28:91–99.
34. Hogan M.J., Staff R.T., Bunting B.P., Murray A.D., Ahearn T.S., Deary I.J., Whalley L.J. Cerebellar brain volume accounts for variance in cognitive performance in older adults. Cortex, 2011; 47: 441–450.
35. Holviala J., Kraemer W.J., Sillanpää E., Karppinen H., Avela J., Kauhanen A., Häkki- nen A., Häkkinen K.. Effects of strength، endurance and combined training on muscle strength، walking speed and dynamic balance in aging men. Eur. J. Appl. Physiol, 2012; 112: 1335–1347.
36. Kafri M., Sasson E., Assaf Y., Balash Y., Aiznstein O., Hausdorff J.M., Giladi N.. High-level gait disorder: associations with specific white matter changes observed on advanced diffusion imaging. J, Neuroimaging, 2013; 23: 39–46.
37. Kalpouzos G., Chételat G., Baron J.-C., Landeau B., Mevel K., Godeau C., Barré L., Constans J.-M., Viader F., Eustache F., Desgranges B. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol. Aging, 2009; 30: 112–124.
38. Keele S.W., Ivry R.B.. Does the cerebellum provide a common computation for diverse tasks؟? A timing hypothesis. Ann. N. Y. Acad. Sci, 1990; 6–8: 179–211.
39. Kelly R.M., Strick P.L.. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci, 2003; 23: 8432–8444.
40. Krienen F.M., Buckner R.L.. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex, 2009; 19: 2485–2497.
41. Kwak Y., Peltier S., Bohnen N.I., Müller M.L.T.M., Dayalu P., Seidler R.D. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front. Syst. Neurosci, 2010; 4: 143.
42. Langan J., Peltier S.J., Bo J., Fling B.W., Welsh R.C., Seidler R.D. Functional implications of age differences in motor system connectivity. Front. Syst. Neu- rosci, 2010; 4: 17.
43. Laughton C.A., Slavin M., Katdare K., Nolan L., Bean J.F., Kerrigan D.C., Phillips E., Lipsitz L.A., Collins J.J.. Aging، muscle activity، and balance con- trol: physiologic changes associated with balance impairment. Gait Posture, 2003; 18: 101–108.
44. Luft A.R., Skalej M., Schulz J.B., Kolb R., Bürk K., Klockgether T.. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb. Cortex, 1999; 9: 712–721.
45. MacLullich A.M.J., Edmond C.L., Ferguson K.J., Wardlaw J.M., Starr J.M., Seckl J.R., Deary I.J. Size of the neocerebellar vermis is associated with cognition in healthy elderly men. Brain Cogn, 2024; 56: 344–348.
46. Miall R.C., Weir D.J., Wolpert D.M., Stein J.F. Is the cerebellum a smith predictor? J. Mot. Behav, 1993; 2:203–216.
47. Paul R., Grieve S.M., Chaudary B., Gordon N., Lawrence J., Cooper N., Clark C.R., Kukla M., Mulligan R., Gordon E. Relative contributions of the cerebel- lar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiol. Aging, 2009; 30: 457–465.
48. Raz N., Dupuis J.H., Briggs S.D., McGavran C., Acker J.D.. Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. Am. J. Neuroradiol, 1998; 19: 65–71.
49. Raz N., Gunning-Dixon F., Head D., Williamson A., Acker J.D.. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. Am. J. Neuroradiol, 2001; 22: 1161– 1167.
50. Sullivan E.V., Deshmukh A., Desmond J.E., Lim K.O., Pfefferbaum A.. Cere- bellar volume decline in normal aging، alcoholism، and Korsakoff’s syndrome: relation to ataxia. Neuropsychology, 2000; 14: 341–352.
51. Sullivan E.V., Pfefferbaum A.. Diffusion tensor imaging and aging. Neurosci. Biobehav. Rev. 2006; 30:749–761.
52. Tang Y., Whitman G.T., Lopez I., Baloh R.W. Brain volume changes on lon- gitudinal magnetic resonance. J. Neuroimaging, 2001; 11: 393–400.
53. Taniwaki T., Okayama A., Yoshiura T., Togao O., Nakamura Y., Yamasaki T., Ogata K., Shigeto H., Ohyagi Y., Kira J.-I., Tobimatsu S. Age-related alterations of the functional interactions within the basal ganglia and cerebellar motor loops in vivo. Neuroimage, 2007; 36: 263–1276.