Development of stock portfolio trading systems using machine learning methods
Subject Areas : Stock ExchangeAli Heidarian 1 , Mohadeseh Moradi Mehr 2 , Ali Farhadian 3
1 - Department of Management, Faculty of Financial Sciences, Management and Entrepreneurship, Kashan University, Kashan, Iran
2 - Department of Management, Faculty of Financial Sciences, Management and Entrepreneurship, Kashan University, Kashan, Iran
3 - Department of Management, Faculty of Financial Sciences, Management and Entrepreneurship, Kashan University, Kashan, Iran
Keywords: Machine Learning, Tehran Stock Market, convolutional neural network, Mean-variance model, Stock portfolio formation,
Abstract :
Investment portfolio theory is an important foundation for portfolio management, which is a well-studied but not saturated topic in the academic community. Integrating return forecasting in investment portfolio formation can improve the performance of portfolio optimization model. Since machine learning models have shown a superiority over statistical models, in this research, a approach of forming the stock portfolio in two stages is presented. first step, by implementing neural network, suitable stocks are selected for purchase, in the second step, using the (MV) model, the optimal weight in investment portfolio is determined for them. In particular, the stages of selecting suitable stocks and forming a stock portfolio are the two main stages of the model developed in this research. first step, a convolutional neural network model is proposed to predict stock buy and sell points for the next period.second step, stocks that are labeled as buys are selected as stocks suitable for buying, and MV model is used to determine their optimal weight in the stock portfolio. The results obtained using 5 shares of Tehran stock market as a study sample show that the efficiency and Sharpe ratio of proposed method is significantly better than traditional methods (without filtering suitable stocks)
_|1) پارسائیان، علی و جهان خانی، علی (1384) " مدیریت سرمایهگذاری و ارزیابی اوراق بهادار"،چاپ دوم، تهران، انتشارات دانشکده مدیریت.
2) حسینی، حوریه سادات و گرجی آرا، محمد(1398) "مدیریت سرمایهگذاری و ریسک"، چاپ پنجم، انتشارات نگاه دانش.
3) شارپ، ویلیام اف؛ الکساندر، گوردن جی و بیلی، جفری وی (1978) "مدیریت سرمایهگذاری" ،شریعت پناهی، جعفری. نشر اتحاد (1392).
4) 4)Ausmees, S. Milovanović, F. Wrede, and A. Zafari, “Taming Deep Belief Networks,” pp. 1–14, 2017.
5) Chen, W. Chen, and C. Huang, “Financial Time-series Data Analysis using Deep Convolutional Neural Networks,” 2016 7th Int. Conf. Cloud Comput. Big Data (CCBD). IEEE, pp. 99–104, 2016.
6) Christian Szegedy, Alexander Toshev, “Deep Neural Networks for Object Detection,” Adv. Neural Inf. Process. Syst., pp. 2553–2561, 2013.
7) Das, K. Mokashi, and R. Culkin, “Are Markets Truly Efficient ? Experiments Using Deep Learning Algorithms for Market Movement Prediction,” pp. 1–19, 2018. Navon and Yosi Keller, “Financial Time Series Prediction using Deep Learning,” 2017.
8) Di Persio and O. Honchar, “Recurrent neural networks approach to the financial forecast of Google assets,” vol. 11, pp. 7–13, 2017.
9) Felipe Dias Paiva, Rodrigo Tomás Nogueira Cardoso, “Decision-making for financial trading: A fusion approach of machine learning and portfolio selection,” Expert Syst. Appl., pp. 635–655, 2019.
10) Gorgulho, R. Neves, and N. Horta, “Applying a GA kernel on optimizing technical analysis rules for stock picking and portfolio composition,” Expert Syst. Appl., vol. 38, no. 11, pp. 14072–14085, 2011.
11) Hansson, “On stock return prediction with LSTM networks,” 2017.
12) Jonathan Long, Evan Shelhamer, “Fully Convolutional Networks for Semantic Segmentation,” Proc. IEEE Conf. Comput. Vis. pattern Recognit., pp. 3431–3440, 2015.
13) Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
14) Murphy, Technical analysis of the financial markets: A comprehensive guide to trading methods and applications. Penguin, 1999.
15) Saad, D. V Prokhorov, and D. C. Wunsch, “Comparative Study of Stock Trend Prediction Using Time Delay , Recurrent and,” vol. 9, no. 6, pp. 1456–1470, 1998.
16) Sezer and A. M. Ozbayoglu, “Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks,” p. arXiv preprint arXiv:1903.04610, 2019.
17) Shen, Q. Tan, H. Zhang, P. Zeng, and J. Xu, “Deep Learning with Gated Recurrent Unit Networks for Financial Deep Learning with Gated Recurrent Unit Networks for Financial Sequence Predictions Sequence Predictions,” Procedia Comput. Sci., vol. 131, pp. 895–903, 2018.
18) Shuiwang Ji, Wei Xu, Ming Yang, “3D Convolutional Neural Networks for Human Action Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 35(1):221–231, 2012.
19) Yang, Z. Gong, and W. Yang, “Stock Market Index Prediction Using Deep Neural Network Ensemble,” 2017 36th Chinese Control Conf. (CCC). IEEE, 2017.
20) Zhang, C. Aggarwal, and G. J. Qi, “Stock price prediction via discovering multi-frequency trading patterns,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. Part F1296, pp. 2141–2149, 2017.
21) Zhou, H. Zhou, Z. Yang, and L. Yang, “EMD2FNN : A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend,” Expert Syst. Appl., vol. 115, pp. 136–151, 2019.
|_