Selection in Pairs Trading Strategy via a Clustering Method
Subject Areas : Stock ExchangeMajid Ebtia 1 , Mohammad Reza Ariafar 2 , Sayyed Mohammad Hoseini 3 *
1 - Department of Mathematics, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
2 - Department of Resource and Energy Economics, Faculty of Administrative Sciences and Economics, Ferdowsi University, Mashhad, Iran
3 - Department of Mathematics, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran
Keywords: Algorithmic trading, pairs trading, dynamic time deviation, clustering, stocks,
Abstract :
In order to invest properly and identify the right short and long positions, the existence of an efficient strategy is necessary. Pairs trading system is one of the most famous algorithmic trading systems. In this system, a pair of stocks that have same trend in the long-time (reversion to the mean) and have fluctuations (spread) in the short-time is used. The most important point is to identify such a pair of stock. In this research, an approach is used to identify pairs of stocks and also to find the right short and long positions in trading pairs. In the first step, a stock pair that has a long-time statistical relationship is selected. The DTW method is used to calculate the distance between each stock pair and their movement similarity. Then, the hierarchical clustering method is used to cluster stocks, and then pairs of stocks that have a greater degree of similarity are selected. In the second step, the SVM method is used to identify buying and selling positions. In order to check the performance of the method, the S&P 500 index, which includes the top 500 stocks of the New York Stock Exchange, has been used.
ابراهیمیپور، م.، و داودی، س. (1400). بررسی سود آوری راهبرد معامله زوجی بر پایه سیستم حالت-فضای خطی و فیلتر کالمن در بورس اوراق بهادار. دانش سرمایهگذاری, 10(37), 57-75.
دستوری، م.، و مرادپور، م. (1400). بهینهسازی الگوریتم معاملات زوجی پربسامد با استفاده از تلفیق الگوریتم ژنتیک و کنترل فرایند آماری فازی. دانش سرمایهگذاری, 10(40), 471-484.
دولو, ی.، یزدی، آ.، و اردوان، م. (1401). معاملات جفتی؛ مقایسه رویکردهای فاصلهای و کاپیولا. تحقیقات مالی, 24(1), 104-133.
طباطبایی، م.، صالحپور جم, م.، امین، س.، مصفایی، س.، و جمال، آ. (1402). شبیهسازی رسوب معلق با استفاده از الگوریتمهای یادگیری ماشینی و دادههای بارش ماهواره CHIRPS با تاکید بر خوشهبندی دادهها و آزمون گاما، مطالعه موردی: حوزه آبخیز رامیان، استان گلستان. مهندسی و مدیریت آبخیز، 15(3)، 328-350.
عطاران، م.، و صالحی، م. (1400). بررسی عملکرد روشهای تکنیکال مبتنی بر بازگشت به میانگین، در معاملات مکرر. مطالعات مدیریت و کار آفرینی، 35(7)، 421-427.
فلاحپور، آ.، و حکیمیان، آ. (1396). بررسی عملکرد سیستم معاملات زوجی در بورس اوراق بهادار تهران: رویکرد هم انباشتگی و بررسی نسبت سورتینو. مهندسی مالی و مدیریت اوراق بهادار، 30(8)، 1-17.
نوراحمدی، آ.، و نوراحمدی، م. (1402). کاربرد فیلتر کالمن برای تخمین نسبت پوشش ریسک پویا در راهبرد معاملات زوجی (مطالعه موردی: صنعت خودرو). تحقیقات مالی، 25(1)، 63-87.
Adrian، R. M. (2011). The relative strength index revisited. African Journal of Business Management, 5(14), 5855-5862.
Albanese, C., Li, D., Lobachevskiy, E., & Meissner, G. (2013). A comparative analysis of correlation approaches in finance. The Journal of Derivatives, 21(2), 42-66.
Carrasco Blázquez, M., & Prado Román, C. (2018). Pairs trading techniques: An empirical contrast. European Research on Management and Business Economics (ERMBE), 24(3), 160-167.
Ellis, C. A., & Parbery, S. A. (2005). Is smarter better? A comparison of adaptive, and simple moving average trading strategies. Research in International Business and Finance, 19(3), 399-411.
Han, B., & Davis, L. S. (2006). Semi-parametric model-based clustering for DNA microarray data. In 18th International Conference on Pattern Recognition (ICPR'06) (Vol. 3, pp. 324-327). IEEE.
Huck, N., & Afawubo, K. (2015). Pairs trading and selection methods: is cointegration superior? Applied Economics, 47(6), 599-613.
Lai, X., Deng, C., Tang, X., Gao, F., Han, X., & Zheng, Y. (2022). Soft clustering of retired lithium-ion batteries for the secondary utilization using Gaussian mixture model based on electrochemical impedance spectroscopy. Journal of Cleaner Production, 339, 130786.
Liew, R. Q., & Wu, Y. (2013). Pairs trading: A copula approach. Journal of Derivatives & Hedge Funds, 19, 12-30.
Lu, C. J., Lee, T. S., & Chiu, C. C. (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision support systems, 47(2), 115-125.
Lu, Y. (2018). Construction of financial warning model for the listed companies-based on cash Flow index. Management & Engineering, 33, 12-22.
Madhavaram, G. R., Dodds, J. C., & Saint Mary’s University (Halifax, N.S.). (2013). Statistical arbitrage using pairs trading with support vector machine learning. Saint Mary’s University.
Moraes Sarmento, S., & Horta, N. (2020). Enhancing a pairs trading strategy with the application of machine learning. Expert Systems with Applications, 158, 113490.
Moraes Sarmento, S., Horta, N., (2021). A Machine Learning based Pairs Trading Investment Strategy. SpringerBriefs in Applied Sciences and Technology, Springer International Publishing.
Müller, M. (2007). Dynamic time warping. Information Retrieval for Music and Motion, 14, 69-84.
Schwartz, B., Gannot, S., & Habets, E. A. (2014). Online speech dereverberation using Kalman filter and EM algorithm. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(2), 394-406.
Sriramulu, S., Jarvi, T. D., & Stuve, E. M. (1999). Reaction mechanism and dynamics of methanol electrooxidation on platinum (111). Journal of Electroanalytical Chemistry, 467(1-2), 132-142.
Taylor, N. (2004). Trading intensity, volatility, and arbitrage activity. Journal of Banking & Finance, 28(5), 1137-1162.