Smart portfolio using quantitative investment models
Subject Areas :
Financial engineering
reza mansourian
1
,
Nader Rezaei
2
,
sayyedAli Nabavichashmi
3
,
Ahmad Pouyanfar
4
,
Ali Abdollahi
5
1 - Department of Accounting and Financial Management, Maragheh Branch, Islamic Azad University, Maragheh, Iran
2 - Department of Accounting and Financial Management, Bonab Branch, Islamic Azad University, Bonab, Iran
3 - Department of Financial Management, Babol Branch, Islamic Azad University, Mazandaran, iran.
4 - Department of Finance, Khatam University, Tehran, iran.
5 - Department of Mathematics, Maragheh Branch, Islamic Azad University, Maragheh, iran
Received: 2019-09-02
Accepted : 2019-10-06
Published : 2020-09-22
Keywords:
"Smart Portfolio",
"Momentum Algorithm",
"Kalman Filter",
Abstract :
In the past few decades, the identification of state variables and parameters of a model from measured data has increased dramatically. This widespread growth has created a growing need for integrated models. Achieving sustained and long-term economic growth requires optimal resource allocation, and this is not possible without the use of financial markets, especially efficient capital markets, so portfolio optimization and wealth allocation between different assets are among the most important issues in investing. In this research, in order to implement smart financial portfolio, it is tried to improve the existing optimization methods based on Sharp Ratio performance and to present an intelligent method for trading based on different algorithms. For this purpose, first, create a quantitative investment model using momentum algorithm and long-term investment model over a 6-year time horizon using monthly stock exchange data and then a set of smart models (general functions, general average and The general algorithm (developed by Kalman filter), which calculates the amount of capital using smart patterns to maximize return and avert negative return on equity investments and optimize capital investing to make the proposed structure perform better than other algorithms. Conventional and can fit and alternative approaches to achieve better results finally, the results indicate that the proposed model is effective and efficient.
References:
آقایی فر، نگار؛ محمدپور زرندی، محمد ابراهیم؛ (1398)، استفاده از الگوریتم ترکیبی سری های زمانی فازی برای پیش بینی قیمت سهام و مقایسه آن با قیمت های سهام محاسبه شده با الگوریتم نسبت طلایی در شرکت های پذیرفته شده بورس تهران، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، شماره 36.
امیری، مقصود؛ حدادیان، حمیدرضا؛ زندیه، مصطفی؛ رئیس زاده، علی(1395)، ارائه مدل معامله هوشمند در بازارهای مالی مبتنی بر الگوریتم ژنتیک، منطق فازی و شبکه عصبی، مجله مهندسی مالی و مدیریت اوراق بهادار، شماره بیست و هفتم .
پاکیزه، کامران؛ رحمانی، میلاد؛ عزیززاده، فاطمه(1396)، بررسی اثر سبک های سرمایه گذاری و تشکیل پرتفوی بهینه با استفاده از شاخص های تکنیکی و نسبت های بنیادی، فصلنامه علمی پژوهشی دانش سرمایه گذاری، سال ششم، شماره 21، بهار 1396.
تهرانی،رضا، عسگر نوربخش، مدیریت سرمایه گذاری، چالز پی جونز، نگاه دانش، 1388.
تهرانی، رضا؛ هندیجانی زاده، محمد؛ نوروزیان لکوان، عیسی(1393)، ارائه رویکردی جدید برای مدیریت فعال پرتفوی وانجام معاملات هوشمند سهام با تاکید بر نگرش انتخاب ویژگی، فصلنامه علمی پژوهشی دانش سرمایه گذاری، سال چهارم، شماره سیزدهم.
تهرانی، رضا؛ فلاح تفتی، سیما, آصفی، سپهر(1397)، بهینه سازی سبدسهام به کمک الگوریتم فراابتکاری دسته های میگو ﺑﺎ اﺳﺘﻔﺎده از ﻣﻌﻴﺎرﻫﺎی ﻣﺨﺘﻠﻒ از رﻳﺴﻚ در بورس اوراق بهادار تهران، ﻓﺼﻠﻨﺎﻣﻪ ﺗﺤﻘﻴﻘﺎت ﻣﺎﻟﻲ ، (20)،4، 426-409.
حیدری، حسن؛ ملابهرامی، احمد(1391) نگرشی پویا بر ارزش در معرض خطر پرتفوی سهام بر پایه مدلهای حالت فضا و فیلتر کالمن، سومین کنفرانس ریاضیات مالی و کاربردها، 11 و 12 بهمن ماه، دانشگاه صنعتی شریف.
خضری، محسن؛ سحابی، بهرام؛ یتوری، کاظم و حیدری، حسن(1394)؛ بررسی اثرات متغیر زمانی تعیین کننده های تورم:مدل های فضا – حالت، فصلنامه مدلسازی اقتصادی، سال نهم، شماره 2 پیاپی، 30، صص 25-46.
جمشیدی عینی، عصمت و خالورزاده، حمید(1395)؛ بررسی روش های هوشمند در حل مساله سبد سهام مقید در بازار سهام تهران، فصلنامه علمی پژوهشی دانش مالی تحلیل اوراق بهادار، سال نهم، شماره سی و یکم، پائیز 1395.
دستوری، مجتبی، فلاحپور، سعید، تهرانی، رضا، مهرگان، محمدرضا، (1397)، الگوریتم معاملات زوجی پربسامد با استفاده از کنترل کیفیت آماری فازی، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، شماره 37.
فلاح شمس، میرفیض، عطایی، یونس (1392) ، مقایسه کارائی معیارهای استراتژی شتاب )مومنتوم( در انتخاب پرتفوی مناسب" مجله مهندسی مالی و مدیریت اوراق بهادار.
قاسمی دشتکی، مهسا (1387)، پیش بینی قیمت گذاری عرضه های عمومی اولیه، ترکیب شبکه های عصبی و الگوریتم ژنتیک، پایان نامه کارشناسی ارشد، رشته حسابداری دانشگاه تهران.
رهنمای رودپشتی، فریدون؛ نیکومرام، هاشم؛ طلوعی اشلقی، هاشم؛ حسین زاده لطفی، فرهاد؛ بیات، مرضیه(1394)؛ بررسی کارایی بهینه سازی پرتفوی براساس مدل پایدار با بهینه سازی کلاسیک در پیش بینی ریسک و بازده پرتفوی، مجله مهندسی مالی و مدیریت اوراق بهادار شماره بیست و دوم، بهار 1394.
رهنمای روپشتی، کاظم چاوشی، ابراهیم صابر (1393) " بهینه سازی پرتفوی متشکل از سهام صندوقهای سرمایه گذاری مشترک بورس اوراق بهادار تهران با رویکرد الگوریتم ژنتیک"، فصلنامه دانش سرمایه گذاری، سال سوم، شماره دوازدهم.
راعی، رضا و سعیدی علی(1391)، مبانی مهندسی مالی و مدیریت ریسک. چاپ پنجم، تهران: انتشارات:سمت؛ 83
Asmerilda Hitaj, Giovanni Zambruno, (2016), Are Smart Beta strategies suitable for Hedge Funds portfolios?, Review of Financial Economics, doi:10.1016/j.rfe.2016.03.001
Achelis(2000). Journal of Accounting Research. s.l.: Vision Books,
Ang A., Chen J. and Xing Y. (2006). Downside Risk: Review of Financial Studies, 19(4), 1191-1239.
Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing. s.l.: Journal of Finance,. 45(3), 444-455.
Chetran saran mehra, adam prugel , Bennett, (2016), Constructing Smart Portfolios From Data Driven Quantitative Investment Models, A thesis submitted in partial ful_llment for the degree of Doctor of Philosophy.
Raza , Muhammad Wajid & Ashraf, Dawood, (2018). "Does the Application of Smart Beta Strategies Enhance Portfolio Performance? The Case of Islamic Equity Investments," Working Papers 2018-1, The Islamic Research and Teaching Institute (IRTI).
Baba, T. Kawachi, T. Nomura, Y. Sakatani, (2004), “Utilization of NNs & Gas for improving the traditional technical analysis in the financial market”, SICE annual Conference, 2(2), 1409-1412.
Torrubiano, R.and Suarez ,A(2008).”A Hybrid Optimization Approach to Index Tracking”, Operation Research Journal, 166
Fabozzi, F. J. & Markowitz, H. M. (2011). Equity Valuation and Portfolio Management. Vol. 199. John Wiley & Sons.
Hirabayashi, A., Aranha, C., & Hitoshi, I. (2009). Optimization of the trading rule in foreign exchange using genetic algorithm. . s.l.: ACM Genetic and Evolutionary Computation,. 1529-1536.
Huang, C., Chang, C., Li, Kuo, Bo, Lin, Hsieh, T., & Chang, B. (2012). A genetic-search model for first-day returns using fundamentals. . s.l.: Machine Learning and Cybernetics, 5, 1662-1667.
Kaucic, M. (2012). Portfolio management using artificial trading
Huck, N. & Afawubo, K. (2015). Pairs trading and selection methods: is cointegration superior? Applied Economics. 47(6): pp: 599-613.
Harry Markowitz, 1991, Portfolio selection: efficient diversification of investments, Wiley-Blackwell.
Hon, M.T., I. tonks (2003). “Momentum in the UK stock markets”, Journal of Multinational Financial Management. 13 (1):43-70.
Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: implications for stock market efficiency, Journal of Finance, Vol. 48, pp. 65-91.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering. 82(1): 35-45.
Simpson, P.W., & Osborn, D.R., & Sensier, M. (2001). Modelling businesscycle movements in the UK economy. Economica, 68: 243-267.
Usta, I., Y.M. Kantar (2011). Mean-Variance-Skewness-Entropy Measures: A Multi-Objective Approach for Portfolio Selection, Entropy. 13: 117-133.
F. Sharpe, “Capital asset prices: A theory of market equilibrium under conditions of risk,” The Journal of Finance, pp. 425–442, 1964.
Ross and R. Roll, “The arbitrage theory of capital asset pricing,” Journal of Economic Theory, vol. 13, pp. 341–360, 1976.
MacLean, E. O. Thorp, and W. T. Z. W. T., The Kelly Capital Growth Investment Criterion, L. MacLean, E. O. Thorp, and W. T. Z. W. T., Eds.
World Scientific Press, 2011.
T. Moskowitz, Y. H. Ooib, and L. Pedersenb, “Time series momentum,” Journal of Financial Economics, vol. 104, pp. 228–250, 2011.
Gatev, W. N. Goetzmann, and K. G. Rouwenhorst, “Pairs trading: Performance of a relative-value arbitrage rule,” Review of Financial Studies, vol. 19, pp. 797–827, 2006.
Kelly, “A new interpretation of information rate,” Information Theory, vol. 2, pp. 185–189, 1956.
_||_
Asmerilda Hitaj, Giovanni Zambruno, (2016), Are Smart Beta strategies suitable for Hedge Funds portfolios?, Review of Financial Economics, doi:10.1016/j.rfe.2016.03.001
Achelis(2000). Journal of Accounting Research. s.l.: Vision Books,
Ang A., Chen J. and Xing Y. (2006). Downside Risk: Review of Financial Studies, 19(4), 1191-1239.
Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing. s.l.: Journal of Finance,. 45(3), 444-455.
Chetran saran mehra, adam prugel , Bennett, (2016), Constructing Smart Portfolios From Data Driven Quantitative Investment Models, A thesis submitted in partial ful_llment for the degree of Doctor of Philosophy.
Raza , Muhammad Wajid & Ashraf, Dawood, (2018). "Does the Application of Smart Beta Strategies Enhance Portfolio Performance? The Case of Islamic Equity Investments," Working Papers 2018-1, The Islamic Research and Teaching Institute (IRTI).
Baba, T. Kawachi, T. Nomura, Y. Sakatani, (2004), “Utilization of NNs & Gas for improving the traditional technical analysis in the financial market”, SICE annual Conference, 2(2), 1409-1412.
Torrubiano, R.and Suarez ,A(2008).”A Hybrid Optimization Approach to Index Tracking”, Operation Research Journal, 166
Fabozzi, F. J. & Markowitz, H. M. (2011). Equity Valuation and Portfolio Management. Vol. 199. John Wiley & Sons.
Hirabayashi, A., Aranha, C., & Hitoshi, I. (2009). Optimization of the trading rule in foreign exchange using genetic algorithm. . s.l.: ACM Genetic and Evolutionary Computation,. 1529-1536.
Huang, C., Chang, C., Li, Kuo, Bo, Lin, Hsieh, T., & Chang, B. (2012). A genetic-search model for first-day returns using fundamentals. . s.l.: Machine Learning and Cybernetics, 5, 1662-1667.
Kaucic, M. (2012). Portfolio management using artificial trading
Huck, N. & Afawubo, K. (2015). Pairs trading and selection methods: is cointegration superior? Applied Economics. 47(6): pp: 599-613.
Harry Markowitz, 1991, Portfolio selection: efficient diversification of investments, Wiley-Blackwell.
Hon, M.T., I. tonks (2003). “Momentum in the UK stock markets”, Journal of Multinational Financial Management. 13 (1):43-70.
Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: implications for stock market efficiency, Journal of Finance, Vol. 48, pp. 65-91.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering. 82(1): 35-45.
Simpson, P.W., & Osborn, D.R., & Sensier, M. (2001). Modelling businesscycle movements in the UK economy. Economica, 68: 243-267.
Usta, I., Y.M. Kantar (2011). Mean-Variance-Skewness-Entropy Measures: A Multi-Objective Approach for Portfolio Selection, Entropy. 13: 117-133.
F. Sharpe, “Capital asset prices: A theory of market equilibrium under conditions of risk,” The Journal of Finance, pp. 425–442, 1964.
Ross and R. Roll, “The arbitrage theory of capital asset pricing,” Journal of Economic Theory, vol. 13, pp. 341–360, 1976.
MacLean, E. O. Thorp, and W. T. Z. W. T., The Kelly Capital Growth Investment Criterion, L. MacLean, E. O. Thorp, and W. T. Z. W. T., Eds.
World Scientific Press, 2011.
T. Moskowitz, Y. H. Ooib, and L. Pedersenb, “Time series momentum,” Journal of Financial Economics, vol. 104, pp. 228–250, 2011.
Gatev, W. N. Goetzmann, and K. G. Rouwenhorst, “Pairs trading: Performance of a relative-value arbitrage rule,” Review of Financial Studies, vol. 19, pp. 797–827, 2006.
Kelly, “A new interpretation of information rate,” Information Theory, vol. 2, pp. 185–189, 1956.
1) Aghaei Far, Negar; Mohammadpour Zarandi, Mohammad Ibrahim; (2018), using the combined algorithm of fuzzy time series to predict the stock price and comparing it with the stock prices calculated with the golden ratio algorithm in the listed companies of Tehran Stock Exchange, Financial Engineering and Securities Management Quarterly, No. 36.
2) Amiri, Maqsood; Haddadian, Hamidreza; Zandieh, Mustafa; Raeeszadeh, Ali (2016), presentation of smart transaction model in financial markets based on genetic algorithm, fuzzy logic and neural network, financial engineering and securities management journal, twenty-seventh issue.
3) Pakizeh, Kamran; Rahmani, Milad; Azizzadeh, Fatemeh (2016), Investigating the effect of investment styles and optimal portfolio formation using technical indicators and fundamental ratios, Danesh Investment Quarterly, 6th year, number 21, spring 2016.
4) Tehrani, Reza, Asgar Nourbakhsh, Investment Management, Charles P. Jones, Negah Danesh, 2018.
5) Tehrani, Reza; Handijanizadeh, Mohammad; Nowrozian Lakvan, Isa (2013), presenting a new approach for active portfolio management and smart stock trading with an emphasis on the attitude of feature selection, Investing Science Research Quarterly, 4th year, 13th issue.
6) Tehrani, Reza; Falah Tafti, Sima, Asefi, Sepehr (2017), Optimizing the stock market using the meta-heuristic algorithm of shrimp groups using different risk criteria in Tehran Stock Exchange, Financial Research Bulletin, (20), 4, 426-409.
7) Heydari, Hassan; Molabahrami, Ahmed (2013) A dynamic approach to the value at risk of the stock portfolio based on state space models and the Kalman filter, the third conference on financial mathematics and applications, 11th and 12th of Bahman, Sharif University of Technology.
8) Khazri, Mohsen; Sahabhi, Bahram; Yeturi, Kazem and Heydari, Hassan (2014); Investigating the time-varying effects of inflation determinants: state-space models, Economic Modeling Quarterly, 9th year, 2 consecutive issues, 30, pp. 25-46.
9) Jamshidi Eini, Esmet and Khalourzadeh, Hamid (2015); Investigating smart methods in solving the problem of the restricted stock portfolio in the Tehran stock market, financial research quarterly of securities analysis, year 9, number 31, fall 2015.
10) Dasori, Mojtabi, Fallahpour, Saeed, Tehrani, Reza, Mehrgan, Mohammad Reza, (2017), High-Frequency Pair Trading Algorithm Using Fuzzy Statistical Quality Control, Financial Engineering and Securities Management Quarterly, No. 37.
11) Fallah Shams, Mirfaiz, Ataei, Younes (2012), comparing the effectiveness of momentum strategy criteria in choosing the right portfolio" Journal of Financial Engineering and Securities Management.
12) Ghasemi Dashtaki, Mahsa (2007), forecasting the pricing of initial public offerings, the combination of neural networks and genetic algorithms, Master's Thesis, Department of Accounting, University of Tehran.
13) Rahnema Rodpashti, Fereydon; Nikumram, Hashem; Toloi Ashlaghi, Hashem; Hosseinzadeh Lotfi, Farhad; Bayat, Marzieh (2014); Investigating the effectiveness of portfolio optimization based on the stable model with classical optimization in predicting portfolio risk and return, Journal of Financial Engineering and Securities Management, Number 22, Spring 2014.
14) Rahnemai Rupeshti, Kazem Chavoshi, Ebrahim Saber (2013) "Optimization of portfolio consisting of shares of mutual funds of Tehran Stock Exchange with genetic algorithm approach", Investment Science Quarterly, 3rd year, 12th issue.
15) Rai, Reza and Saeedi Ali (2012), Financial engineering and risk management basics. Fifth edition, Tehran: Publications: Samat; 83