Investigation of phytochemical and morphological response of a local Cyamopsis tetragonoloba L. mass to foliar application of zinc oxide nanoparticles
Subject Areas :
Medicinal Plants
Safoora Bazzi
1
,
Ali Movafeghi
2
,
Jafar Valizadeh
3
,
Moharam Valizadeh
4
1 - Ph.D Student, Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2 - Professor, Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
3 - Professor, Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
4 - Asistant Professor, Research Center of Medicinal and Ornamental Plants, University of Sistan and Baluchestan, Zahedan, Iran
Received: 2021-07-17
Accepted : 2021-12-18
Published : 2021-12-18
Keywords:
flavonoid,
Zinc Oxide Nanoparticles,
Phytochemical,
Iranshahr,
Cyamopsis tetragonoloba L,
Abstract :
Since supplementation of plants with zinc is a solution to improve plant growth and compensate for zinc deficiency in soil, in this study to investigate the nutritional effect of 40 nm zinc oxide nanoparticles (ZnO-NPs) on morphological characteristics, seed gum and phytochemical products of leaves of a native mass of Cyamopsis tetragonoloba L (Gguar plant) from Iranshahr a completely randomized experiment with three replicates was conducted at the University of Sistan and Baluchestan, Zahedan, Iran in mid-May 2018. Guar gum content, total phenol content and total flavonoid content were determined by the phenol-sulfuric acid, the Folin–Ciocalteu reagent, and colorimetric aluminum chloride methods, respectively. Seed cultivation was carried out in the greenhouse of Sistan and Baluchestan University in early June 2018. The treatments consisted of six different concentrations of ZnO-NPs including 0 (control), 25, 50, 100, 200, and 500 mg L-1 by foliar application of guar plants in two stages (20 and 27 days after sowing seeds). Based on the results, with increasing the concentration of nanoparticles, the number of seeds in pod gradually decreased, but no significant difference was observed in pod length and root length. However, stem length, stem dry weight, root dry weight, leaf area, stomata density, leaf dry weight, 500-seed weight, pod dry weight gradually increased, with the maximum increase observed in the 500 mg L-1 treatment compared to the control. In this treatment, seed gum, total phenol and total flavonoids increased by 2.55, 2.10 and 1.34 times compared to the control treatment, respectively. According to the results, ZnO-NPs nanoparticles with the properties used in this study can be used to improve the growth characteristics and increase the amount of seed gum, phenol and flavonoids of guava leaves and obtain the benefits of their medicinal applications.
References:
Achayuthakan, P., and Suphantharika, M. 2008. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydrate Polymers. 71(1):9-17.
Adiga, J.D., B.M. Muralidhara, P. Preethi, pathi, L. and Kalaivanan, D. 2018. Effect of zinc and boron application on leaf area, photosynthetic pigments, stomatal number and yield of cashew. International Journal of Current Microbiology and Applied Sciences. 7(1):1786-1795.
Archer, D., and Kramer, D. 2020. The use of microbial accessible and fermentable carbohydrates and/or butyrate as supportive treatment for patients with coronavirus SARS-CoV-2 infection. Frontiers in Medicine. 7(292):5-7.
Arkhimandritova, S., Shavarda, A. and Potokina, E. 2020. Key metabolites associated with the onset of flowering of guar genotypes Cyamopsis tetragonoloba (L.) Taub. BMC Plant Biology. 20:1-10.
Bhatt, R.K., Jukanti, A.K. and Roy, M.M. 2017. Cluster bean Cyamopsis tetragonoloba (L.) Taub., an important industrial arid legume. Legume Research. 40(2):207-214.
Blasco, B., Navarro-León, E. and Ruiz, J. 2019. Study of Zn accumulation and tolerance of HMA4 TILLING mutants of Brassica rapa grown under Zn deficiency and Zn toxicity. Plant Science. 287:110201.
Castillo-González, J., Ojeda-Barrios, D., Hernández-Rodríguez, A., González-Franco, A., Robles-Hernández, L. and López-Ochoa, G. 2018. Zinc metalloenzymes in plants. Interciencia. 43(4):242-248.
Chamani, E., Karimi Ghalehtaki, S., Mohebodini, M. and Ghanbari, A. 2015. The effect of zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Iranian Journal of Genetics and Plant Breeding. 4(2):11-19.
Dzyubenko, N.I., Dzyubenko, E.A., Potokina, E.K. and Bulyntsev, S.V. 2017. Clusterbeans Cyamopsis tetragonoloba (L.) taub. Properties, use, plant genetic resourses and expected introduction in Russia. Sel'sskokhozyaistvennaya Biologiya. 52(6):1116-1128.
El-Tohamy, W.A., and El-Greadly, N.H.M. 2007. Physiological responses, growth, yield and quality of snap beans in response to foliar application of yeast, vitamin E and zinc under sandy soil conditions. Australian Journal of Basic and Applied Sciences. 1(3):294-299.
Fageria, N.K., Filho, M.P.B. and Moreira, A. 2009. Foliar fertilization of crop plants. J. Plant Nutr. 32(6):1044-1064.
Gupta, A.P. and D. Verma, K. 2014. Guar gum and their derivatives: A research profile. International Journal of Advanced Research. 2(1):680-690.
Hellebust,A., and Craigie, J.S. 1978. Handbook of physiological and biochemical methods Cambrige univ, New York and London.512.
Hussain, A., and Ali S. 2018. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution. 242:1518-1526.
Kazemi Oskuee, R., Hamid, M.H.N.A., Kargar, H., Darroudi, M., Sabouri, Z. and Khorsand Zak, A. 2013. Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics International. 39(8):9195-9199.
Khan, I., Saeed, K. and Khan, I. 2017. Nanoparticles: properties, applications and toxicities. 2017. Arabian Journal of Chemistry. 12(7):908-931.
Khater, R.M., and Abd-allah, W.H.A. 2017. Effect of some trace elements on growth, yield and chemical constituents of Ocimum bacilicum Egyptian Journal of Desert Research. 23(1):1-23.
Kim, D., Lee, J.-Y., Yang, J.S., Kim, J.W., Kim, V.N. and Chang, H. 2020. The architecture of SARS-CoV-2 transcriptome. Cell. 181(4): 914-921.e10.
Kulbat, K. 2016. The role of phenolic compounds in plant resistance. Biotechnology and Food Sciences. 80(2):97-108.
López-Moreno, M.L., De la Rosa, G., Hernández-Viezcas, J.A., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology. 44(19): 7315-7320.
Meena, K.R., Dahama, A.K. and Rerager, M.L. 2006. Effect of phosphorus and zinc fertilization on growth and quality of clusterbean Cyamopsis tetragonoloba (L.) Taub. Annuals of Agricultural Ressearch. 27(3): 224-226.
Meftahizadeh, H., Ghorbanpourb, M. and Asareh, M.H. 2019. Comparison of morphological and phytochemical characteristics in guar (Cyamopsis tetragonoloba) landraces and cultivars under different sowing dates in an arid environment. Industrial Crops and Products. 140:111606.
Mianabadi, M., and Hoshani, M. 2015. Antimicrobial and anti-oxidative effects of methanolic extract of Dorema aucheri Jourrnal of Agricultural Science and Technology. 17(3):623-634.
Mohsenzadeh, S., and Moosavian, S.S. 2017. Zinc sulphate and nano-zinc oxide effects on some physiological arameters of Rosmarinus officinalis. American Journal of Plant Sciences. 08(11):2635-2649.
Morffy, N., and Strader, L. 2020. Old town roads: routes of auxin biosynthesis across kingdoms. Current Opinion in Plant Biology. 55:21-27.
Mudgil, D., Barak, S. and Khatkar, B.S. 2014. Guar gum: processing, properties and food applications International Journal of Food Science and Technology. 51(3):409-418.
Mudgil, D., Barak, S. and Khatkar, B.S. 2016. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough. International Journal of Biological Macromolecules. 93:131-135.
Nair, R. 2016. Effects of nanoparticles on plant growth and development p. 95-118, In Kole, et al., (eds.). Plant Nanotechnology Springer, Cham. 383.
Nielsen, S.S. 2010. Phenol-Sulfuric acid method for total carbohydrates, p. 177, In S. Nielsen, (ed.) Food Analysis Laboratory Manual. Springer, Boston, MA, Boston.
Parmar, S. 2016. Effect of ZnO nanoparticles on germination, growth and yeild of ground nut (Arachis hypogaea) Doctor of philosophy, Anand Agricultural, India. Anand.
Priester, J.H., Ge, Y., Mielke, R.E., Horst, A.M., Cole, S. and Priester, J.H. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences of the United States of America. 109(37):14734-14735.
Raliya, R., and Tarafdar, J.C. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba). Agricultural Research. 2(1):48-57.
Salama D.M., Osman, S.A., Abd El-Aziz, M.E., and Abd Elwahed, M.S.A. 2019. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal Agric Biotechnol. 18101083.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J., Hartenstein, V. Eliceiri, K., Tomancak, P. and A. Cardona. 2012. An open-source platform for biological-image Nature Methods. 9676–682
Schulten, A., Bytomski, L., Quintana, J., Bernal, M. and Krämer, U. 2019. Do Arabidopsis squamosa promoter binding protein-like genes act together in plant acclimation to copper or zinc deficiency? Plant Direct. 3:1-14.
Siddiqui, Z., Parveen, A., Ahmad, L. and Hashem, A. 2019. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae. 249:374-382.
Singh, A., Prasad, S.M. and Singh, S. 2018. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environmental Nanotechnology Monitoring and Management. 9:42-49.
Singh, R. 2014. Improved cultivation practices for clusterbean in kharif and summer season improved cultivation practices for clusterbean in kharif and summer season. Indian Council of Agricultural Research (ICAR). Central Arid Zone Research Institute, Jodhpur.
Song, C., Liu, M., Meng, J., Chi, M., Xi, Z. and Zhang, Z. 2015. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera Merlot growing on zinc deficient soil Molecules. 20(2): 2536-2554.
Sturikova, H., Krystofova, O., Huska, D. and Adam, V. 2018. Zinc, zinc nanoparticles and plants. Journal of Hazardous Matererials. 349:101-110.
Sultan, M., Zakir, N., Ashiq Rabbani, M., Shinwari, Z.K. and Shahid Masood, M. 2013. Genetic diversity of guar (Cyamopsis tetragonoloba) landraces from Pakistan based on RAPD markers. Pakistan Journal of Botany. 45(3):865-870.
Sun, L., Wang, Y., Wang, R., Zhang, P., Ju, Q. and Xu, J. 2020. Physiological, transcriptomic and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science: Nano. 7(11):3587-3604.
Torabian, S., Zahedi, M. and Khoshgoftarmanesh, A. 2016. Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. Journal of Agricultural Science and Technology. 18(4):1013-1025.
Walia, N. 2005. Guar gum as a gelling agent for plant tissue culture media. In Vitro Cellular and Developmental Biology- Plant. 41:258-261.
Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A. and Pokhrel, L.R. 2020. Zinc oxide nanoparticles (ZnO NPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max Kowsar). Science of the Total Environment. 738:140240.
Zhang, T., Sun, H., Lv, Z., Cui, L., Mao, H. and Kopittke, P.M. 2018. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. Journal of Agricultural and Food Chemistry. 66(11):2572-2579.
_||_
Achayuthakan, P., and Suphantharika, M. 2008. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydrate Polymers. 71(1):9-17.
Adiga, J.D., B.M. Muralidhara, P. Preethi, pathi, L. and Kalaivanan, D. 2018. Effect of zinc and boron application on leaf area, photosynthetic pigments, stomatal number and yield of cashew. International Journal of Current Microbiology and Applied Sciences. 7(1):1786-1795.
Archer, D., and Kramer, D. 2020. The use of microbial accessible and fermentable carbohydrates and/or butyrate as supportive treatment for patients with coronavirus SARS-CoV-2 infection. Frontiers in Medicine. 7(292):5-7.
Arkhimandritova, S., Shavarda, A. and Potokina, E. 2020. Key metabolites associated with the onset of flowering of guar genotypes Cyamopsis tetragonoloba (L.) Taub. BMC Plant Biology. 20:1-10.
Bhatt, R.K., Jukanti, A.K. and Roy, M.M. 2017. Cluster bean Cyamopsis tetragonoloba (L.) Taub., an important industrial arid legume. Legume Research. 40(2):207-214.
Blasco, B., Navarro-León, E. and Ruiz, J. 2019. Study of Zn accumulation and tolerance of HMA4 TILLING mutants of Brassica rapa grown under Zn deficiency and Zn toxicity. Plant Science. 287:110201.
Castillo-González, J., Ojeda-Barrios, D., Hernández-Rodríguez, A., González-Franco, A., Robles-Hernández, L. and López-Ochoa, G. 2018. Zinc metalloenzymes in plants. Interciencia. 43(4):242-248.
Chamani, E., Karimi Ghalehtaki, S., Mohebodini, M. and Ghanbari, A. 2015. The effect of zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Iranian Journal of Genetics and Plant Breeding. 4(2):11-19.
Dzyubenko, N.I., Dzyubenko, E.A., Potokina, E.K. and Bulyntsev, S.V. 2017. Clusterbeans Cyamopsis tetragonoloba (L.) taub. Properties, use, plant genetic resourses and expected introduction in Russia. Sel'sskokhozyaistvennaya Biologiya. 52(6):1116-1128.
El-Tohamy, W.A., and El-Greadly, N.H.M. 2007. Physiological responses, growth, yield and quality of snap beans in response to foliar application of yeast, vitamin E and zinc under sandy soil conditions. Australian Journal of Basic and Applied Sciences. 1(3):294-299.
Fageria, N.K., Filho, M.P.B. and Moreira, A. 2009. Foliar fertilization of crop plants. J. Plant Nutr. 32(6):1044-1064.
Gupta, A.P. and D. Verma, K. 2014. Guar gum and their derivatives: A research profile. International Journal of Advanced Research. 2(1):680-690.
Hellebust,A., and Craigie, J.S. 1978. Handbook of physiological and biochemical methods Cambrige univ, New York and London.512.
Hussain, A., and Ali S. 2018. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution. 242:1518-1526.
Kazemi Oskuee, R., Hamid, M.H.N.A., Kargar, H., Darroudi, M., Sabouri, Z. and Khorsand Zak, A. 2013. Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics International. 39(8):9195-9199.
Khan, I., Saeed, K. and Khan, I. 2017. Nanoparticles: properties, applications and toxicities. 2017. Arabian Journal of Chemistry. 12(7):908-931.
Khater, R.M., and Abd-allah, W.H.A. 2017. Effect of some trace elements on growth, yield and chemical constituents of Ocimum bacilicum Egyptian Journal of Desert Research. 23(1):1-23.
Kim, D., Lee, J.-Y., Yang, J.S., Kim, J.W., Kim, V.N. and Chang, H. 2020. The architecture of SARS-CoV-2 transcriptome. Cell. 181(4): 914-921.e10.
Kulbat, K. 2016. The role of phenolic compounds in plant resistance. Biotechnology and Food Sciences. 80(2):97-108.
López-Moreno, M.L., De la Rosa, G., Hernández-Viezcas, J.A., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology. 44(19): 7315-7320.
Meena, K.R., Dahama, A.K. and Rerager, M.L. 2006. Effect of phosphorus and zinc fertilization on growth and quality of clusterbean Cyamopsis tetragonoloba (L.) Taub. Annuals of Agricultural Ressearch. 27(3): 224-226.
Meftahizadeh, H., Ghorbanpourb, M. and Asareh, M.H. 2019. Comparison of morphological and phytochemical characteristics in guar (Cyamopsis tetragonoloba) landraces and cultivars under different sowing dates in an arid environment. Industrial Crops and Products. 140:111606.
Mianabadi, M., and Hoshani, M. 2015. Antimicrobial and anti-oxidative effects of methanolic extract of Dorema aucheri Jourrnal of Agricultural Science and Technology. 17(3):623-634.
Mohsenzadeh, S., and Moosavian, S.S. 2017. Zinc sulphate and nano-zinc oxide effects on some physiological arameters of Rosmarinus officinalis. American Journal of Plant Sciences. 08(11):2635-2649.
Morffy, N., and Strader, L. 2020. Old town roads: routes of auxin biosynthesis across kingdoms. Current Opinion in Plant Biology. 55:21-27.
Mudgil, D., Barak, S. and Khatkar, B.S. 2014. Guar gum: processing, properties and food applications International Journal of Food Science and Technology. 51(3):409-418.
Mudgil, D., Barak, S. and Khatkar, B.S. 2016. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough. International Journal of Biological Macromolecules. 93:131-135.
Nair, R. 2016. Effects of nanoparticles on plant growth and development p. 95-118, In Kole, et al., (eds.). Plant Nanotechnology Springer, Cham. 383.
Nielsen, S.S. 2010. Phenol-Sulfuric acid method for total carbohydrates, p. 177, In S. Nielsen, (ed.) Food Analysis Laboratory Manual. Springer, Boston, MA, Boston.
Parmar, S. 2016. Effect of ZnO nanoparticles on germination, growth and yeild of ground nut (Arachis hypogaea) Doctor of philosophy, Anand Agricultural, India. Anand.
Priester, J.H., Ge, Y., Mielke, R.E., Horst, A.M., Cole, S. and Priester, J.H. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences of the United States of America. 109(37):14734-14735.
Raliya, R., and Tarafdar, J.C. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba). Agricultural Research. 2(1):48-57.
Salama D.M., Osman, S.A., Abd El-Aziz, M.E., and Abd Elwahed, M.S.A. 2019. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal Agric Biotechnol. 18101083.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J., Hartenstein, V. Eliceiri, K., Tomancak, P. and A. Cardona. 2012. An open-source platform for biological-image Nature Methods. 9676–682
Schulten, A., Bytomski, L., Quintana, J., Bernal, M. and Krämer, U. 2019. Do Arabidopsis squamosa promoter binding protein-like genes act together in plant acclimation to copper or zinc deficiency? Plant Direct. 3:1-14.
Siddiqui, Z., Parveen, A., Ahmad, L. and Hashem, A. 2019. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae. 249:374-382.
Singh, A., Prasad, S.M. and Singh, S. 2018. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environmental Nanotechnology Monitoring and Management. 9:42-49.
Singh, R. 2014. Improved cultivation practices for clusterbean in kharif and summer season improved cultivation practices for clusterbean in kharif and summer season. Indian Council of Agricultural Research (ICAR). Central Arid Zone Research Institute, Jodhpur.
Song, C., Liu, M., Meng, J., Chi, M., Xi, Z. and Zhang, Z. 2015. Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera Merlot growing on zinc deficient soil Molecules. 20(2): 2536-2554.
Sturikova, H., Krystofova, O., Huska, D. and Adam, V. 2018. Zinc, zinc nanoparticles and plants. Journal of Hazardous Matererials. 349:101-110.
Sultan, M., Zakir, N., Ashiq Rabbani, M., Shinwari, Z.K. and Shahid Masood, M. 2013. Genetic diversity of guar (Cyamopsis tetragonoloba) landraces from Pakistan based on RAPD markers. Pakistan Journal of Botany. 45(3):865-870.
Sun, L., Wang, Y., Wang, R., Zhang, P., Ju, Q. and Xu, J. 2020. Physiological, transcriptomic and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science: Nano. 7(11):3587-3604.
Torabian, S., Zahedi, M. and Khoshgoftarmanesh, A. 2016. Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. Journal of Agricultural Science and Technology. 18(4):1013-1025.
Walia, N. 2005. Guar gum as a gelling agent for plant tissue culture media. In Vitro Cellular and Developmental Biology- Plant. 41:258-261.
Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A. and Pokhrel, L.R. 2020. Zinc oxide nanoparticles (ZnO NPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max Kowsar). Science of the Total Environment. 738:140240.
Zhang, T., Sun, H., Lv, Z., Cui, L., Mao, H. and Kopittke, P.M. 2018. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. Journal of Agricultural and Food Chemistry. 66(11):2572-2579.