Evaluation of phytochemical and antioxidant activity in different parts of Ferula assafoetida L. from Semnan and Khorasan provinces
Subject Areas : BiochemistryMorteza Mehrpour 1 , Bahareh Kashefi 2 * , Mohammad Moghadam 3
1 - Department of Agriculture, Damghan Branch, Islamic Azad University, Damghan, Iran
2 - Department of Agriculture, Damghan Branch, Islamic Azad University, Damghan, Iran
3 - Assistant Professor, Department of Horticultural Sciences, Ferdowsi University of Mashhad,
Mashhad, Iran
Keywords: Flavonoid, Antioxidant, Ferula assafoetida L, Khorasan and Semnan Province, Phenol. ,
Abstract :
This study was evaluated in phytochemical and antioxidant activity of Ferula assafoetida L. in Semnan and Khorasan-Razavi provinces. The plant samples were collected in May 2013, the total phenolic was determined by Folin–Ciocalteu, total flavonoid by Aluminium chloride , tannin contents by Folin- Denis and the antioxidant capacity were measured utilizing DPPH and FRAP methods. Results of variance analysis were showed that the highest total phenols content (1.014 and 2.8 mgGAE/1 g) was observed in leave extract of Khorasan and Semnan provinces, respectively. The maximum tannin contents (0.00194 mg/ml) was observed in stem and leave extracts of Khorasan and Semnan provinces .Also the highest antioxidant activity by DPPH method (1111.08 and 731.61 µg/ml) was observed in root extract of Khorasan province samples. The maximum antioxidant activity content were obtained in leave extract of Semnan by FRAP method (2.85 mg/ml). In general the highest content of total phenol and flavonoid was obtained in leave and root extracts of plants in Semnan province. But the root extract of Khorasan had the maximum antioxidant capacity (1111.08 µg/ml).Therefore it may be stated that Mojen region in Semnan province had higher antioxidant activity than Khorasan region. So the quality of antioxidant compounds of Ferula assafoetida L. was depending on variation of environmental factors and plant parts.
- Bagheri, A., Mokhtari, T., Hosseini nia, A., Shenavai, M. 2012. The effect of solvent extraction of tannin extract quantitative and qualitative performance Peppermint. National conference on natural products and medicinal plants, 2: 1-6.
- Bamdad, F., Kadivar, M., Keramat, J. 2006. Evaluation of phenolic content and antioxidant activity of Iranian caraway in comparison with clove and BHT using model systems and vegetable oil. Food Science and Technology, 41: 7-20.
- Benzie, I.F. and Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The FRAP Assay. Analytical Biochemistry, 239: 70-76.
- Berimani, M., 1997. Effects of nitrogen at different stages of plant life and the production of its oil Dracocephalum moldavica. MSc Thesis, Tarbiat Moalem University, 135 p.
- Corticchiato, M., Tomi, F., Bernardini, A.F. 1998. Composition and infraspecific variability of essential oil from Thymus babarona Lois. Biochemical Systematics and Ecology, 26: 915-932.
- Ebrahimzadeh, M.A., Hosseinimehr, S.J., Hamidinia, A. 2008. Antioxidant and free radical scavenging activity of Feijoa sallowiana fruits peel and leaves. Pharmacology, 1: 7-14.
- Ebrahimzadeh, M.A., Pourmorad, F., Hafezi, S. 2008. Antioxidant activities of Iranian corn silk. Turkish Journal of Biology, 32: 43-49.
- Elisabetsky, E., Figueiredo, W., Oliveria, G. 1992. Traditional amazonian nerve tonics as antidepressant agents: Chaunochiton kappleri: a case study. Journal of Herbs, Spices and Medicinal Plants, 1: 125-162.
- Gariola, S., Shariff, N., Bhate, A. 2010. Influence of climate change on production of secondary chemicals in high altitude medicinal plants. Journal of Medicinal Plant Research, 5: 1825-1829.
- Ghasemi, K., Ghasemi, Y., Ehteshamnia, A. 2011. Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. Journal of Medicinal Plants Research, 5: 1128-1133.
- GhorbanAli, M., Saadatmand, L., Niakan, M. 2011. Evaluation of the effects of habitat on the flavonoid, Polyphenols, anthocyanins and antioxidant activity of herbs measures (Elaeagnus angustifolia). The First National Conference on Issues of Modern Agriculture, 3: 1-5.
- Hemati, K.H., Sharifani, M., Kalati, H. 2006. Flavenoid content of Hawthorn (Crataeguus monogyna) in Iran. Acta Horticulturae. International Horticultural Congress-International.
- Hohtola, A. 2007. Northern plant as a source of bioactive products. In: Taulavuori and Tauravuori (eds.) Physiology of Northern Plants under changing environment. Res. Signpost India, 291-307.
- Hunter, K.J. 2002. The antioxidant activity and composition of fresh, frozen, jarred and canned vegetable. Innovative Food cience and Emerging Technologies, 3: 399-406.
- Jaakola, L., Maatta-Riihinen, K.R., Karenlampi, S. 2004. Activation of flavenoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta, 218: 721-728.
- Jamshidi, M., Ahmadi ashtiani, H.R., Rezazadeh, SH., Fathiazad, F., Mazandarani, M., Khaki, A. 2010. Comparison of phenolic compounds and antioxidant activity of some plant species native to the Mazandaran. Journal of Botany, 2(34): 1-3.
- Javanmardi, J., Stushnoff, C., Locke, E. 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chemistry, 83: 547-550.
- Karimi, F., Amini Eshkevari, T., Zeinali, A. 2010. Differences of total alkaloid, atropine and scopolamine contents in leaves of Atropa belladonna L. from Vaz area-north of Iran in relation to some environmental and phonological factors. Iranian Journal of Plant Biology, 1: 77-88.
- Khatir nameni, M., Mazandarani, M. 2011. Of total flavonoids and phenolic different organs of medicinal plant Deadly nights hade (Atropa belladonna L.) in the jungle province Tvskstan. National Conference on Medicinal Plants, 2: 2-7.
- Laurel, F.R., Servio, R.P., Valerie, B.K. 1999. Direct and indirect effects of climate change on St. John's wort, Hypericum perforatum L. (Hypericaceae). Oecologia, 120: 113-122.
- Leaman, D.J. 2006. Medicinal plant conservation. Newsletter of the medicinal plant specialist group of the IUCN species survival commission. Silphion, 13: 6-24.
- Lioyd, D.R., Phillips, D.H. 1999. Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutation Research, 424: 23-36.
- Mathew, S., Abraham, T.E. 2006. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. The journal Food and Chemical Toxicology, 44: 198-206.
- Omidbeygi, R. 2008. Production and processing of medicinal plants, Institute Press Astan Qods Razavi. Mashhad, 347 p.
- Omidbeygi, R. 2009. Processing of medicinal plants, Publication of Astan Qods Razavi, 1: 240-245.
- Peterson, D.M., Emmons, C.L. and Hibbs, A. 2001. Phenolic antioxidant activity in pearling fractions of oat groats. The Journal of Cereal Science, 33: 97-103.
- Rangana, S. 1977. Manual for analysis of fruits and vegetables products. Tata McGraw Hill Co. Pvt. Ltd. New Dehli, 634 p.
- Roginsky, V., Lissi, E.A. 2005. Review of methods to determine chain-breaking antioxidant activity in food. Food Chemistry, 92: 235-254.
- Saboora, A., Dadmehr, Kh., Ranjbar, M. 2013. Total phenolic and flavenoid contents and investigation on antioxidant properties of stem and leaf extracts in six Iranian species of wild Dianthus L. Iranian Journal of Medicinal and Aromatic Plants, 29: 281-295.
- Seetharam, K.A., Pasricha, J.S. 1987. Condiments and contact dermatitis of the finger-tips. Indian journal of dermatology, venereology and leprology, 53: 325-228.
- Sepehrifar, R., Hasanlu, T. 2009. Study of polyphenolic compounds, anthocyanins and flavonoids and antioxidant herbs Tom cranberry (Vaccinium arctostaphylos L.) collected from four different regions of Iran. Journal of Medicinal Plants, 1(33): 66-74.
- Shahidi, F. 1997. Natural antioxidants: an overview, In: Natural antioxidants, chemistry, health effects and applications, Shahidi, F. (ed.) AOCS Press Champaign, Illinois, USA, 1-10.
- Shi, J., Nawaz, H., Pohorly, J. 2005. Extraction of polyphenolics from Plant material for functional foods engineering and technology. Food Reviews International, 21: 1-12.
- Tabatabaei raisi, A., Khaligi, A., Kashi, A. 2007. Antioxidant activity and chemical compositions of essential oil of aerial parts of Satureja sahendica Bornm. Pharmaceutical Sciences, 3: 1-6.
- Wyk, B.E., Wink, M. 2004. Medicinal plants of the world: an illustrated scientific guide to important medicinal plants and their uses. Timber Press USA, 221 p.
- Yanive, Z., Palevitch, D. 1982. Effects of drought on the secondary metabolite of medicinal and aromatic plants, 1-23. In: Atal and Kapur (eds.) Cultivation and Utilization of Medicinal Plants. CSIR Jammu-Tawi, India, 877p.
- Zarghami Moghaddam, P., Mazandarani, M., Zolfaghari, M.R. 2012. Antibacterial and antioxidant activities of root extract of Onosma dichroanthum Boiss. In North of Iran. African Journal of Microbiology Research, 6: 1776-1781.
- Zeinali, Z., Hemmati, Kh., Mazandarani, M. 2014. Aut ecology, ethnopharmacology, phytochemistry and antioxidant activity of Ferula gummosa Boiss. In different regions of Razavi Khorasan Province. Eco-phytochemical Journal of Medicinal Plants, 1: 11-22.
- ZiaULHaq, M., Shahid Shakir, A., Ahmad, S. 2012. Antioxidant potential of various parts of Ferula assa-foetida L. Journal of Medicinal Plants, 6: 3254-3258.
- Zovko Koncic, M., Kremer, D., Karlovic, K. 2010. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food and Chemical Toxicology, 48: 2176-21.